Preview

Bulletin of Shakarim University. Technical Sciences

Advanced search

Development of a model system for the technological complex of benzene production

Abstract

   Mathematical models of aggregates of complex technological complexes and problems of constructing a system model of a complex, i.e. a structured model, are studied, an approach to constructing a system of models of a technological complex based on various information based on the methodology of system analysis is formulated. A clear production system
has been built – mathematical models of rectification and benzene columns of the main units of the benzene complex. In the work it is established that according to the proposed approach it is advisable to build composite models on these aggregates, i.e. the number of products at their output (benzene, raffinate, heavy aromatics) is determined by constructing aggregate regression models, and product quality indicators are fuzzy. The influence of aromatic hydrocarbons contained in the reformate on the average octane number of benzene is the main indicator of product quality, constructed in the form of a linguistic model based on a logical rule of conditional generalization and a knowledge base.

About the Authors

A. Kurmanbai

Kazakhstan


Y. Ospanov

Kazakhstan


D. Kozhakhmetova

Kazakhstan


R. Bekbaeva

Kazakhstan


References

1. Diligenskaia А. N. Identificastia obektov upravlenia. Uchebnoe posobie. Samarа: Samarski gosudarstvennyi trkhnicheski universitet. 2009. – 142 s.

2. Orazbayev B. B. Метоdy modelirovania i priniatia reshenii dlia upravlenia proizvodstvom v nechetkoi srede. ЕNU im. L. N. Gumileva. – Аstana: 2016. – 398 s.

3. Kodwo Annan Mathematical modeling of the dynamic exchange of solutes during bicarbonate dialysis. Mathematical and Computer Modelling. 2012. Vol. 55. – P. 1691-1704.

4. Гмурман В. Е. Теория вероятностей и математическая статистика : Учеб. Пособие / В. Е. Гмурман – 12-е изд., перераб. – М.: Высшее образование, 2006. – 479 с.

5. Zhi-Wen Zhao, De-Hui Wang Statistical inference for generalized random coefficient autoregressive model. Mathematical and Computer Modelling. Volume 56 (2012). Pages 152-166.

6. S. Štampar, S. Sokolič, G. Karer, A. Žnidaršič, I. Škrjanc. Theoretical and fuzzy modelling of a pharmaceutical batch reactor // Mathematical and Computer Modelling. Volume 53, Pages 637-645. 2011.

7. Аlyiev R. А., Therkovny А. E., Mamedova G. А. Upravlenie proizvodstvom pri nechetkoi iskhodnoi informatsii. – Moscow: Energoatomizdat, 1991. – 250 s.

8. Dubois D. The role of fuzzy sets indecision sciences: Old techniques and new directions // Fuzzy Sets and Systems. 2011. V. 184. P. 3.

9. Rykov А. S., Orazbayev B. B. Metody issledovania system I razrabotka matematicheskikh modelei v nechetkoi srede. М.: MISiS. 1995.

10. Orazbayev B. B. Teoria I praktika metodov nechetkikh mnojestv. Ministerstvo nauki I obrazovania RK, izd. Bastau, – Almaty, 2014. – 488 s.


Review

For citations:


Kurmanbai A., Ospanov Y., Kozhakhmetova D., Bekbaeva R. Development of a model system for the technological complex of benzene production. Bulletin of Shakarim University. Technical Sciences. 2021;(2(2)):49-54. (In Kazakh)

Views: 150


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X