EFFECT OF MECHANOACTIVATION ON WC ALLOYS
https://doi.org/10.53360/2788-7995-2025-2(18)-51
Abstract
This paper presents an overview of studies aimed at obtaining tungsten carbide alloys with preliminary mechanical activation (MA). MA is widely used in the field of materials science and is aimed at changing the physical and mechanical properties of materials in order to increase the activity of their reaction during research. In this regard, the main attention in this article is focused on the study of the effect of mechanical activation on tungsten carbide (WC) mixtures. WC-based hard alloys are used in various industrial conditions due to their excellent mechanical properties and outstanding wear resistance in combination with high strength and heat resistance, moreover, more than half of the production of WC-based hard alloys is associated with the manufacture of cutting tools. The article also presents complex types of mechanical activation used in various studies. And also considered the effect of the types of mechanical activation of mixtures on the physical and mechanical properties of the obtained alloys. An analysis of the optimal conditions for powder consolidation by spark-plasma sintering (SPS) is carried out, which allows achieving high density and strength of materials.
About the Authors
Sh. R. KurbanbekovKazakhstan
Sherzod Rustambekovich Kurbanbekov – Director,
Turkestan 161200
N. S. Ertayev
Kazakhstan
Nursultan Sultanbayevich Ertayev – master's student,
Turkestan 161200
M. T. Aydarova
Madina Tursynbekovna Aydarova – PhD student,
Ust-Kamenogorsk 070000
A. S. Kizatov
Aibar Sovetbekovovich Kizatov – Researcher,
Ust-Kamenogorsk 070000
N. P. Musakhan
Nurken Parsakhanovich Mussakhan – Researcher,
Turkestan 161200
References
1. Kurlov A. S., Gusev A. I. Physics and Chemistry of Tungsten Carbides: Monograph. Moscow: Fizmatlit, 2013. 270 p. ISBN: 978-5-9221-1477-6
2. Lyakishev N. P. Encyclopedic Dictionary of Metallurgy: In 2 volumes. Vol. 1. Moscow: Intermet Engineering, 2000. p. 287.
3. Malik A. A., Zakusilov V. V., Ryzhkov A. A. Study of the Influence of Mechanochemical Activation Frequency of Charge Components on the Process of Producing Porous Materials by Self-Propagating High-Temperature Synthesis // Energy: Efficiency, Reliability, Safety: Proceedings of the 20th All-Russian Scientific and Technical Conference, December 2–4, 2014, Tomsk. Vol. 2. Tomsk: TPU Publishing House, 2014. pp. 176–179.
4. Dmitrenko D. V., Blednova Zh. M., Balaev E. Yu. O. Structure Evolution of Multiphase Powder Materials with EPP at Various Stages of Mechanochemical Activation // Polythematic Online Scientific Journal of Kuban State Agrarian University. 2017. No. 132. pp. 1216–1229.
5. Antsiferov V. N., Peshchenko S. N., Yarmonov A. N. Non-Equilibrium Solubility during Mechanical Alloying // Physics and Chemistry of Material Treatment. 2000. No. 12. pp. 13–18.
6. Smetkin A. A., Kuznetsov A. V., Petrov I. I. Influence of High-Energy Mechanochemical Activation of Powder Mixtures on the Structure Formation and Properties of Titanium-Based Materials // Powder Metallurgy. 2004. No. 27. pp. 61–64.
7. Kachenyuk M. N., Smetkin A. A. Structure Evolution of Composite Particles During Mechanochemical Activation of Powder Mixtures Based on Titanium, Silicon Carbide, and Carbon // Modern Problems of Science and Education. 2014. No. 6. p. 111.
8. Boldyrev V. V. Mechanochemistry and Mechanical Activation of Solids // Russian Chemical Reviews. 2006. Vol. 75, No. 3. pp. 203–216. https://doi.org/10.1070/RC2006v075n03ABEH001205
9. Boldyrev V. V. Experimental Methods in the Mechanochemistry of Solid Inorganic Substances. Moscow: Mir, 1983. 192 p.
10. Kosolapova T. Ya. Carbides. Moscow: Metallurgy, 1968.
11. Loginov Yu. N. Technology for Producing Blanks from Hard Alloys: Textbook. Sverdlovsk: Publishing House of UPI named after S. M. Kirov, 1984. 53 p.
12. Tretyakov V. I. Fundamentals of Metallurgy and Production Technology of Sintered Hard Alloys. 1976.
13. Belyaev N. E. Methods for Producing Tungsten Carbide. 2022.
14. Savostin A. V., Shuray P. E. Mechanochemical Activation in Sugar Production Technology // Proceedings of Higher Educational Institutions. Food Technology. 2009. No. 1. pp. 59–61.
15. Onishchenko D. V., Reva V. P. Production of Tungsten Carbide Nanopowder by Mechanical Activation Method // Physics and Chemistry of Material Treatment. 2011. Vol. 2. pp. 71–77.
16. Yagofarov V. Yu. Mechanochemical Synthesis of Tungsten Carbide Using Carbon of Different Origins // Metal Physics of Light Alloys. 2019. p. 186.
17. Yang R., Wang Y., Zhang Y., et al. Molten Salt Synthesis of Tungsten Carbide Powder Using a Mechanically Activated Powder // International Journal of Refractory Metals and Hard Materials. 2011. Vol. 29, No. 1. pp. 138–140.
18. Aytekin N. Ö., Ağaoğulları D., Öveçoğlu M. L. Mechanochemical Synthesis of Tungsten Carbide Powders Induced by Magnesiothermic Reduction of WCl₆ and Na₂CO₃ Raw Materials // Materials Research Express. 2019. Vol. 6, No. 9. Article 096517.
19. Klubovich V. V., Kostyuk V. A., Levitsky A. V. Ultrasonic Mechanochemical Activation of Powders Used for Synthesizing Electroceramic Materials // Proceedings of the National Academy of Sciences of Belarus. Series of Physical and Technical Sciences. 2012. No. 2. pp. 11–16.
20. Modern Advanced Materials: Chapter 14. Shut V. N. Structure and Properties of Semiconductor Ceramics Produced from Submicron and Nanocrystalline Barium Titanate Powders / Ed. by V. V. Klubovich. Vitebsk, 2011. pp. 381–414.
21. Agranat B. A., Kuznetsov A. Yu., Lebedev V. A. Ultrasound in Powder Metallurgy. Moscow: Nauka, 1986. 168 p.
22. Artemyev V. V., Klubovich V. V., Rubanik V. V. Ultrasound and Material Processing. Minsk: EcoPerspektiva, 2003. 335 p.
23. Nazarova A., Mulyukov R., Rubanik V., et al. Effect of Ultrasonic Oscillations on the Structure and Properties of Ultrafine-Grained Nickel // Physics of Metals and Metallography. 2010. Vol. 110, No. 6. pp. 600–607.
24. Shut V., Mozzharov S., Kashevich A. Collection of Papers of the Int. Scientific Symposium "Advanced Materials and Technologies", Vitebsk, May 24–26, 2011. Vitebsk, 2011. pp. 116–119.
25. Rubanik V. V., Kostyuk V. V., Kostyuk A. V. Ultrasonic Mechanochemical Activation of Powders. 2016.
26. Rakhimova A. K., Galeleyva A. K. Методы синтеза литий железа фосфата: микроволновой синтез – перспективный метод для синтеза LiFePO4 // Chemical Journal of Kazakhstan. – 2019. – Т. 1, № 1. – С. 1–10.
27. Morgan D., Van der Ven A., Ceder G. Li Conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) Olivine Materials // Electrochem. Solid-State Lett. — 2004. — Vol. 7. — P. 30–32.
28. Franger S., Bourbon C., Cras F. L. Optimized lithium iron phosphate for high-rate electrochemical applications // J. Electrochem. Soc. — 2004. — Vol. 151. — P. 1024.
29. Bazhenov S. V., Kurlov A. S. Effect of mechanical activation and solid-state synthesis temperature on the composition and grain size of tungsten carbide // AIP Conference Proceedings. — AIP Publishing, 2022. — Vol. 2466. — No. 1.
30. Tsuchida T., Morita N. Formation of ternary carbide Co6W6C by mechanical activation assisted solid-state reaction // Journal of the European Ceramic Society. — 2002. — Vol. 22. — No. 13. — P. 2401–2407.
31. Kariminejad A. et al. Mechanically Activated synthesis of Tungsten Carbide Nanoparticles from Tungsten Oxide // Advanced Materials Research. — 2014. — Vol. 829. — P. 622–626.
32. de Oro Calderon R. et al. Synthesis of Nanostructured Tungsten Carbide Powders from Mechanically Activated Mixes of Tungsten Oxide with Different Carbon Sources // International Powder Metallurgy Congress and Exhibition, Euro PM 2013; Gothenburg; Sweden; 15 September 2013 through 18 September 2013. — 2013. — Vol. 1. — P. 89–94.
33. Oro R. et al. Optimizing the synthesis of ultrafine tungsten carbide powders by effective combinations of carbon sources and atmospheres // International Journal of Refractory Metals and Hard Materials. — 2017. — Vol. 63. — P. 9–16.
34. Ozolin A., Sokolov E. Effect of mechanical activation of tungsten powder on the structure and properties of the sintered Sn–Cu–Co–W material. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty). — 2022. — Vol. 24, No. 1. — P. 48–60. — (In Russ.)
35. Buravlev I. Y. et al. Microstructural evolution and mechanical behavior of WC–4wt.% TiC–3wt.% TaC–12wt.% Co refractory cermet consolidated by spark plasma sintering of mechanically activated powder mixtures // Advanced Powder Technology. — 2024. — Vol. 35, No. 10. — P. 104625.
36. da Silva E. N. et al. Investigation of characteristics and properties of spark plasma sintered ultrafine WC-6.4 Fe3.6Ni alloy as potential alternative WC-Co hard metals // International Journal of Refractory Metals and Hard Materials. — 2021. — Vol. 101. — P. 105669.
37. Chuvil’deev V. N. et al. Sintering of nano-and ultradispersed mechanically activated W-Ni-Fe powders and the manufacture of ultrahigh-strength heavy tungsten alloys // Russian Metallurgy (Metally). — 2014. — Vol. 2014. — P. 215–228.
38. Bazhenov S. V., Kurlov A. S. Solid-State Synthesis of Tungsten Carbide in Vacuum from a Mechanically Activated Mixture of Tungsten and Carbon // Modern Synthetic Methodologies for Drug Development and Functional Materials (MOSM 2020). Yekaterinburg, 2020. p. 104.
39. Evstratov E. V., Baikin A. S., Averin S. I. Effect of Mechanical Activation Time on the Structure and Mechanical Properties of W–Cu Powder Composite // Inorganic Materials: Applied Research. — 2023. — Vol. 14, No. 5. — P. 1408–1413.
40. Abdulmenova E. V., Kulkov S. N. The studies of the effect of mechanical activation of WC-based powder on its properties // AIP Conference Proceedings. — AIP Publishing, 2020. — Vol. 2310, No. 1.
41. Chuvil’deev V. N. et al. Effect of Mechanical Activation Time on the Density of Fine-Grained Tungsten Alloy 90W–7Ni–3Fe, Obtained by Spark Plasma Sintering // Fizika metallov i metallovedenie. — 2023. — Vol. 124, No. 10. — P. 931–938.
42. Abdulmenova E. V., Rumyantsev M. V., Kulkov S. N. Effect of mechanical treatment of powder on the structure and phase composition of hard alloys // AIP Conference Proceedings. — AIP Publishing, 2022. — Vol. 2509, No. 1.
43. Li X. et al. WC-8Co-2Al (wt%) Cemented Carbides Prepared by Mechanical Milling and Spark Plasma Sintering // Materials Science Forum. — Trans Tech Publications Ltd, 2010. — Vol. 638. — P. 1817–1823.
Review
For citations:
Kurbanbekov Sh.R., Ertayev N.S., Aydarova M.T., Kizatov A.S., Musakhan N.P. EFFECT OF MECHANOACTIVATION ON WC ALLOYS. Bulletin of Shakarim University. Technical Sciences. 2025;(2(18)):411-421. https://doi.org/10.53360/2788-7995-2025-2(18)-51