Preview

Вестник Университета Шакарима. Серия технические науки

Расширенный поиск

МАТЕРИАЛЫ MXENE: СОВРЕМЕННЫЕ МЕТОДЫ СИНТЕЗА, ЭКОЛОГИЧЕСКИ ЧИСТЫЕ ПОДХОДЫ И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ В КАЧЕСТВЕ ПОКРЫТИЙ И КОМПОЗИТНЫХ МАТЕРИАЛОВ

https://doi.org/10.53360/2788-7995-2025-2(18)-60

Аннотация

Статья представляет обзор современных методов синтеза MXene – двумерных материалов, включающих карбиды, нитриды и карбонитриды переходных металлов, с акцентом на экологически безопасные подходы и их перспективы в качестве покрытий и композитов. Рассматриваются традиционные методы травления с использованием фторидов, таких как плавиковая кислота, и их недостатки, включая экологические риски. В противовес им описаны «зеленые» технологии, такие как электрохимическое травление и методы с расплавленными солями, которые минимизируют воздействие на окружающую среду и повышают масштабируемость производства. Особое внимание уделено уникальным свойствам MXene: высокой электропроводности, механической гибкости и гидрофильности, что делает их востребованными в энергетике, электронике и экологии. В статье подчеркивается их потенциал в антикоррозионных, антибактериальных покрытиях, защите от электромагнитных помех и сенсорных системах. Также обсуждаются возможности применения MXene в Казахстане, включая использование местного сырья для производства суперконденсаторов, биомедицинских материалов и катализаторов для аэрокосмической отрасли. Экономическая эффективность локального синтеза подчеркивает перспективы для развития высокотехнологичных отраслей. Работа направлена на освещение текущих достижений и вдохновение на дальнейшие исследования в области устойчивого материаловедения, демонстрируя, как MXene могут способствовать инновациям, сочетая функциональность с экологической ответственностью.

Об авторах

М. Әліпұлы
Satbayev Univeristy
Казахстан

Мұхтар Әліпұлы – докторант кафедры «Материаловедение, нанотехнологии и инженерная физика»,

050013, Республика Казахстан, г. Алматы, ул. Сатпаева, 22



Н. Н. Нұрғалиев
Шәкәрім университет
Казахстан

Нұржан Нұрлыбекұлы Нұрғалиев – PhD, ассоциированный профессор,

071410, Республика Казахстан, г. Семей, ул. Глинки, 20 А



К. Асқарұлы
Satbayev Univeristy
Казахстан

Қыдыр Асқарұлы – доктор технических наук, Ассоциированный профессор кафедры «Общая физика»,

050013, Республика Казахстан, г. Алматы, ул. Сатпаева, 22



M. Khalid
Университет Глазго
Великобритания

Mohammad Khalid – доктор инженерии, Профессор,

G12 8QQ, Великобритания, Глазго, пр. Университет



С. Азат
Satbayev Univeristy
Казахстан

Сейтхан Азат – Профессор, заведующий Лаборатории Инженерного Профиля, 

050013, Республика Казахстан, г. Алматы, ул. Сатпаева, 22



Список литературы

1. Anasori, B.; Gogotsi, Y. Introduction to 2D Transition Metal Carbides and Nitrides (Mxenes). In 2D Metal Carbides and Nitrides (MXenes); Springer International Publishing: Cham, 2019; pp. 3–12.

2. Chia, X.; Pumera, M. Characteristics and Performance of Two-Dimensional Materials for Electrocatalysis. Nature Catalysis 2018, 1, 909–921, doi:10.1038/s41929-018-0181-7.

3. Ali, I.; Faraz Ud Din, M.; Gu, Z.-G. MXenes Thin Films: From Fabrication to Their Applications. Molecules 2022, 27, 4925, doi:10.3390/molecules27154925.

4. Hantanasirisakul, K.; Alhabeb, M.; Lipatov, A.; Maleski, K.; Anasori, B.; Salles, P.; Ieosakulrat, C.; Pakawatpanurut, P.; Sinitskii, A.; May, S.J.; et al. Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene. Chemistry of Materials 2019, 31, 2941–2951, doi:10.1021/acs.chemmater.9b00401.

5. He, X.; Cui, C.; Chen, Y.; Zhang, L.; Sheng, X.; Xie, D. MXene and Polymer Collision: Sparking the Future of High‐Performance Multifunctional Coatings. Advanced Functional Materials 2024, 34, doi:10.1002/adfm.202409675.

6. Liu, S.; Li, C.; Sun, Y.; Qiu, X.; Li, X.; Sun, C.; Liu, Y.; Yu, Q.; Yu, B.; Cai, M.; et al. BTA-P4444-Lig-Functionalized MXene to Prepare Anticorrosion and Wear-Resistant Integrated Waterborne Epoxy Composite Coating. ACS Sustainable Chemistry & Engineering 2024, 12, 8247–8260, doi:10.1021/acssuschemeng.4c02002.

7. Sheng, M.; Bin, X.; Yang, Y.; Chen, Z.; Que, W. A Green and Fluorine‐Free Fabrication of 3D Self‐Supporting MXene by Combining Anodic Electrochemical In Situ Etching with Cathodic Electrophoretic Deposition for Electrocatalytic Hydrogen Evolution. Advanced Materials Technologies 2023, 9, doi:10.1002/admt.202301694.

8. Amrillah, T.; Abdullah, C.; Hermawan, A.; Sari, F.; Alviani, V. Towards Greener and More Sustainable Synthesis of MXenes: A Review. Nanomaterials 2022, 12, 4280, doi:10.3390/nano12234280.

9. Kumar, S. Fluorine‐Free MXenes: Recent Advances, Synthesis Strategies, and Mechanisms. Small 2023, 20, doi:10.1002/smll.202308225.

10. Kulkarni, R.; Lingamdinne, L.P.; Koduru, J.R.; Karri, R.R.; Chang, Y.-Y.; Kailasa, S.K.; Mubarak, N.M. Recent Advanced Developments and Prospects of Surface Functionalized MXenes-Based Hybrid Composites toward Electrochemical Water Splitting Applications. ACS Materials Letters 2024, 6, 2660–2686, doi:10.1021/acsmaterialslett.4c00034.

11. Rahman, U.U.; Humayun, M.; Ghani, U.; Usman, M.; Ullah, H.; Khan, A.; El-Metwaly, N.M.; Khan, A. MXenes as Emerging Materials: Synthesis, Properties, and Applications. Molecules 2022, 27, 4909, doi:10.3390/molecules27154909.

12. Zhou, J.; Dahlqvist, M.; Björk, J.; Rosen, J. Atomic Scale Design of MXenes and Their Parent Materials─From Theoretical and Experimental Perspectives. Chemical Reviews 2023, 123, 13291–13322, doi:10.1021/acs.chemrev.3c00241.

13. Mim, M.; Habib, K.; Farabi, S.N.; Ali, S.A.; Zaed, M.A.; Younas, M.; Rahman, S. MXene: A Roadmap to Sustainable Energy Management, Synthesis Routes, Stabilization, and Economic Assessment. ACS Omega 2024, doi:10.1021/acsomega.4c04849.

14. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials 2011, 23, 4248–4253, doi:10.1002/adma.201102306.

15. Shuck, C.E.; Ventura-Martinez, K.; Goad, A.; Uzun, S.; Shekhirev, M.; Gogotsi, Y. Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. ACS Chemical Health & Safety 2021, 28, 326–338, doi:10.1021/acs.chas.1c00051.

16. Seredych, M.; Shuck, C.E.; Pinto, D.; Alhabeb, M.; Precetti, E.; Deysher, G.; Anasori, B.; Kurra, N.; Gogotsi, Y. High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis. Chemistry of Materials 2019, 31, 3324–3332, doi:10.1021/acs.chemmater.9b00397.

17. Biswas, S.; Alegaonkar, P.S. MXene: Evolutions in Chemical Synthesis and Recent Advances in Applications. Surfaces 2021, 5, 1–34, doi:10.3390/surfaces5010001.

18. Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Advanced Materials 2021, 33, doi:10.1002/adma.202103393.

19. Shekhirev, M.; Ogawa, Y.; Shuck, C.E.; Anayee, M.; Torita, T.; Gogotsi, Y. Delamination of Ti3C2Tx Nanosheets with NaCl and KCl for Improved Environmental Stability of MXene Films. ACS Applied Nano Materials 2022, 5, 16027–16032, doi:10.1021/acsanm.2c03701.

20. Wang, Y.; Zhou, B.; Tang, Q.; Yang, Y.; Pu, B.; Bai, J.; Xu, J.; Feng, Q.; Liu, Y.; Yang, W. Ultrafast Synthesis of MXenes in Minutes via Low‐Temperature Molten Salt Etching. Advanced Materials 2024, 36, doi:10.1002/adma.202410736.

21. Kim, Y.-J.; Kim, S.J.; Seo, D.; Chae, Y.; Anayee, M.; Lee, Y.; Gogotsi, Y.; Ahn, C.W.; Jung, H.-T. Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis. Chemistry of Materials 2021, 33, 6346–6355, doi:10.1021/acs.chemmater.1c01263.

22. Zhang, M.; Liang, R.; Yang, N.; Gao, R.; Zheng, Y.; Deng, Y.; Hu, Y.; Yu, A.; Chen, Z. Eutectic Etching toward In‐Plane Porosity Manipulation of Cl‐Terminated MXene for High‐Performance Dual‐Ion Battery Anode. Advanced Energy Materials 2021, 12, doi:10.1002/aenm.202102493.

23. Huang, P.; Han, W.-Q. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. Nano-Micro Letters 2023, 15, doi:10.1007/s40820-023-01039-z.

24. Kruger, D.D.; García, H.; Primo, A. Molten Salt Derived MXenes: Synthesis and Applications. Advanced Science 2024, doi:10.1002/advs.202307106.

25. Chan, K.C.; Guan, X.; Zhang, T.; Lin, K.; Huang, Y.; Lei, L.; Georgantas, Y.; Gogotsi, Y.; Bissett, M.A.; Kinloch, I.A. The Fabrication of Ti3C2 and Ti3CN MXenes by Electrochemical Etching. Journal of Materials Chemistry A12, 25165–25175, doi:10.1039/D4TA03457K.

26. Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. Journal of the American Chemical Society 2019, 141, 4730–4737, doi:10.1021/jacs.9b00574.

27. Qureshi, N.; Choi, C.; Doh, J. Expediting High‐Yield Mxene Carbides and Nitrides Synthesis for Next‐Generation 2D Materials. Advanced Materials Technologies 2023, 9, doi:10.1002/admt.202301611.

28. Zhang, S.; Meng, L.; Hu, Y.; Yuan, Z.; Li, J.; Liu, H. Green Synthesis and Biosafety Assessment of MXene. Small2023, 20, doi:10.1002/smll.202308600.

29. Hui, X.; Ge, X.; Zhao, R.; Li, Z.; Yin, L. Interface Chemistry on MXene‐Based Materials for Enhanced Energy Storage and Conversion Performance. Advanced Functional Materials 2020, 30, doi:10.1002/adfm.202005190.

30. Pang, S.-Y.; Wong, Y.-T.; Yuan, S.; Liu, Y.; Tsang, M.-K.; Yang, Z.; Huang, H.; Wong, W.-T.; Hao, J. Universal Strategy for HF-Free Facile and Rapid Synthesis of Two-Dimensional MXenes as Multifunctional Energy Materials. Journal of the American Chemical Society 2019, 141, 9610–9616, doi:10.1021/jacs.9b02578.

31. Huang, X.; Wu, P. A Facile, High‐Yield, and Freeze‐and‐Thaw‐Assisted Approach to Fabricate MXene with Plentiful Wrinkles and Its Application in On‐Chip Micro‐Supercapacitors. Advanced Functional Materials 2020, 30, doi:10.1002/adfm.201910048.

32. Wang, N.; Li, R.; Xu, P.; Li, Z. Scalable Synthesis of Ti3C2Tx–Arginine and Serine-Functionalized Carbon Quantum Dot Microspheres for High Performance Supercapacitors. New Journal of Chemistry 2023, 47, 1993–2002, doi:10.1039/d2nj05580e.

33. Adibah, N.A.; Zaine, S.N.A.; Shukur, M.F.A. Synthesis of Ti3C2 Mxene through In Situ HF and Direct HF Etching Procedures as Electrolyte Fillers in Dye-Sensitized Solar Cell. Materials Science Forum 2021, 1023, 15–20, doi:10.4028/www.scientific.net/msf.1023.15.

34. Long, Y.; Tao, Y.; Shang, T.; Yang, H.; Sun, Z.; Chen, W.; Yang, Q. Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective. Advanced Science 2022, 9, doi:10.1002/advs.202200296.

35. Huang, Y.; Lu, Q.; Wu, D.; Jiang, Y.; Liu, Z.; Chen, B.; Zhu, M.; Schmidt, O.G. Flexible MXene Films for Batteries and Beyond. Carbon Energy 2022, 4, 598–620, doi:10.1002/cey2.200.

36. Han, M.; Yin, X.; Wu, H.; Hou, Z.; Song, C.; Li, X.; Zhang, L.; Cheng, L. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. ACS Applied Materials & Interfaces 2016, 8, 21011–21019, doi:10.1021/acsami.6b06455.

37. Qian, W.; Si, Y.; Chen, P.; Tian, C.; Wang, Z.; Li, P.; Li, S.; He, D. Enhanced Oxidation‐Resistant and Conductivity in MXene Films with Seamless Heterostructure. Small 2024, 20, doi:10.1002/smll.202403149.

38. Firestein, K.L.; von Treifeldt, J.E.; Kvashnin, D.G.; Fernando, J.F.S.; Zhang, C.; Kvashnin, A.G.; Podryabinkin, E.V.; Shapeev, A.V.; Siriwardena, D.P.; Sorokin, P.B.; et al. Young’s Modulus and Tensile Strength of Ti3C2 MXene Nanosheets As Revealed by In Situ TEM Probing, AFM Nanomechanical Mapping, and Theoretical Calculations. Nano Letters 2020, 20, 5900–5908, doi:10.1021/acs.nanolett.0c01861.

39. Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Elastic Properties of 2D Ti 3 C 2 T X MXene Monolayers and Bilayers. Science Advances 2018, 4, doi:10.1126/sciadv.aat0491.

40. Ding, M.; Zhang, X.; Zhang, W. Ti3C2TX MXene@rGo Composite Self-Supporting Membrane and Its Welding Process. Journal of Physics: Conference Series 2023, 2566, 012116, doi:10.1088/1742-6596/2566/1/012116.

41. Ouyang, Y.; Qiu, L.; Bai, Y.; Yu, W.; Feng, Y. Synergistical Thermal Modulation Function of 2D Ti3C2 MXene Composite Nanosheets via Interfacial Structure Modification. iScience2022, 25, 104825, doi:10.1016/j.isci.2022.104825.

42. Li, L.; Cheng, Q. MXene Based Nanocomposite Films. Exploration 2022, 2, doi:10.1002/exp.20220049.

43. Shinde, P.A.; Patil, A.M.; Lee, S.; Jung, E.; Chan Jun, S. Two-Dimensional MXenes for Electrochemical Energy Storage Applications. Journal of Materials Chemistry A 2022, 10, 1105–1149, doi:10.1039/d1ta04642j.

44. Björk, J.; Rosen, J. Functionalizing MXenes by Tailoring Surface Terminations in Different Chemical Environments. Chemistry of Materials 2021, 33, 9108–9118, doi:10.1021/acs.chemmater.1c01264.

45. Ihsanullah, I. Potential of MXenes in Water Desalination: Current Status and Perspectives. Nano-Micro Letters 2020, 12, doi:10.1007/s40820-020-0411-9.

46. Kumar, J.A.; Prakash, P.; Krithiga, T.; Amarnath, D.J.; Premkumar, J.; Rajamohan, N.; Vasseghian, Y.; Saravanan, P.; Rajasimman, M. Methods of Synthesis, Characteristics, and Environmental Applications of MXene: A Comprehensive Review. Chemosphere 2022, 286, 131607, doi:10.1016/j.chemosphere.2021.131607.

47. Fang, R.; Lu, C.; Chen, A.; Wang, K.; Huang, H.; Gan, Y.; Liang, C.; Zhang, J.; Tao, X.; Xia, Y.; et al. 2 D MXene‐based Energy Storage Materials: Interfacial Structure Design and Functionalization. ChemSusChem 2019, 13, 1409–1419, doi:10.1002/cssc.201902537.

48. Tang, M.; Li, J.; Wang, Y.; Han, W.; Xu, S.; Lu, M.; Zhang, W.; Li, H. Surface Terminations of MXene: Synthesis, Characterization, and Properties. Symmetry 2022, 14, 2232, doi:10.3390/sym14112232.

49. Dhamodharan, D.; Al-Harthi, M.A.; Ramya, B.; Bafaqeer, A.; Alam, F. MXenes: A Promising Material with Multifunctional Applications. Journal of Environmental Chemical Engineering 2024, 12, 112316, doi:10.1016/j.jece.2024.112316.

50. Hong, S.; Al Marzooqi, F.; El-Demellawi, J.K.; Al Marzooqi, N.; Arafat, H.A.; Alshareef, H.N. Ion-Selective Separation Using MXene-Based Membranes: A Review. ACS Materials Letters 2023, 5, 341–356, doi:10.1021/acsmaterialslett.2c00914.

51. Repon, Md.R.; Mikučionienė, D.; Paul, T.K.; Al-Humaidi, J.Y.; Rahman, M.M.; Islam, T.; Shukhratov, S. Architectural Design and Affecting Factors of MXene-Based Textronics for Real-World Application. RSC Advances 2024, 14, 16093–16116, doi:10.1039/d4ra01820f.

52. Shi, K.; Meng, X.; Xiao, S.; Chen, G.; Wu, H.; Zhou, C.; Jiang, S.; Chu, P.K. MXene Coatings: Novel Hydrogen Permeation Barriers for Pipe Steels. Nanomaterials 2021, 11, 2737, doi:10.3390/nano11102737.

53. Wang, Y.; Qi, Q.; Yin, G.; Wang, W.; Yu, D. Flexible, Ultralight, and Mechanically Robust Waterborne Polyurethane/Ti3C2Tx MXene/Nickel Ferrite Hybrid Aerogels for High-Performance Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces 2021, 13, 21831–21843, doi:10.1021/acsami.1c04962.

54. He, Y.; Zhang, Y.; Xu, X.; Zhu, Y.; Liu, Y.; Yuan, J.; Men, X. Enhancement on the Thermal and Tribological Behaviors of Polyurethane/Epoxy-Based Interpenetrating Network Composites by Orientationally Aligned CNF/MXene/WPU Aerogels. Composites Part A: Applied Science and Manufacturing 2024, 187, 108477, doi:10.1016/j.compositesa.2024.108477.

55. Giménez, R.; Serrano, B.; San-Miguel, V.; Cabanelas, J.C. Recent Advances in MXene/Epoxy Composites: Trends and Prospects. Polymers 2022, 14, 1170, doi:10.3390/polym14061170.

56. Fugolin, A.P.P.; Costa, A.R.; Correr-Sobrinho, L.; Crystal Chaw, R.; Lewis, S.; Ferracane, J.L.; Pfeifer, C.S. Toughening and Polymerization Stress Control in Composites Using Thiourethane-Treated Fillers. Scientific Reports 2021, 11, doi:10.1038/s41598-021-87151-9.

57. Liu, S.; Lian, Y.; Zhao, Y.; Hou, H.; Ren, J.; Elsharkawy, E.R.; El-Bahy, S.M.; El-Bahy, Z.M.; Wu, N. Recent Advances of MXene-Based Nanocomposites towards Microwave Absorption: A Review. Advanced Composites and Hybrid Materials 2025, 8, doi:10.1007/s42114-024-01145-5.

58. Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M.-K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C.M. Anomalous Absorption of Electromagnetic Waves by 2D Transition Metal Carbonitride Ti 3 CNT X (MXene). Science 2020, 369, 446–450, doi:10.1126/science.aba7977.

59. Wang, X.-Y.; Liao, S.-Y.; Wan, Y.-J.; Zhu, P.-L.; Hu, Y.-G.; Zhao, T.; Sun, R.; Wong, C.-P. Electromagnetic Interference Shielding Materials: Recent Progress, Structure Design, and Future Perspective. Journal of Materials Chemistry C 2022, 10, 44–72, doi:10.1039/d1tc04702g.

60. Pieters, K.; Mekonnen, T.H. Progress in Waterborne Polymer Dispersions for Coating Applications: Commercialized Systems and New Trends. RSC Sustainability 2024, 2, 3704–3729, doi:10.1039/d4su00267a.

61. An, H.; Jiang, C.; Yin, X.; Liu, K.; Liang, S.; Wang, X.; Xiao, J.; Zhao, X.; Sun, Z. Polyaniline/TiO2/MXene Ternary Composites for Enhancing Corrosion Resistance of Waterborne Epoxy Coatings. ACS Applied Nano Materials 2024, 8, 340–350, doi:10.1021/acsanm.4c05723.

62. Wang, P.; Zhang, C.; Wu, M.; Zhang, J.; Ling, X.; Yang, L. Scalable Solution-Processed Fabrication Approach for High-Performance Silver Nanowire/MXene Hybrid Transparent Conductive Films. Nanomaterials 2021, 11, 1360, doi:10.3390/nano11061360.

63. Qiu, X.; Li, C.; Sun, Y.; Liu, Y.; Wang, X.; Sun, S.; Yu, Q.; Yu, B.; Cai, M.; Zhou, F. Study on Anticorrosion and Wear Resistance of Self-Healing Coating Based on Functional MXene and Dynamic Disulfide Bond. ACS Applied Polymer Materials 2024, 6, 11392–11405, doi:10.1021/acsapm.4c01983.

64. Akuzum, B.; Maleski, K.; Anasori, B.; Lelyukh, P.; Alvarez, N.J.; Kumbur, E.C.; Gogotsi, Y. Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes. ACS Nano 2018, 12, 2685–2694, doi:10.1021/acsnano.7b08889.

65. Chen, M.; Li, L.; Deng, Z.; Min, P.; Yu, Z.-Z.; Zhang, C.J.; Zhang, H.-B. Two-Dimensional Janus MXene Inks for Versatile Functional Coatings on Arbitrary Substrates. ACS Applied Materials & Interfaces 2023, 15, 4591–4600, doi:10.1021/acsami.2c20930.

66. Dwivedi, N.; Dhand, C.; Kumar, P.; Srivastava, A.K. Emergent 2D Materials for Combating Infectious Diseases: The Potential of MXenes and MXene–Graphene Composites to Fight against Pandemics. Materials Advances 2021, 2, 2892–2905, doi:10.1039/d1ma00003a.

67. Wang, Z.; Cheng, Z.; Fang, C.; Hou, X.; Xie, L. Recent Advances in MXenes Composites for Electromagnetic Interference Shielding and Microwave Absorption. Composites Part A: Applied Science and Manufacturing 2020, 136, 105956, doi:10.1016/j.compositesa.2020.105956.

68. Sun, Y.; Lu, J.; Li, S.; Dai, C.; Zou, D.; Jing, W. MXene-Based Membranes in Water Treatment: Current Status and Future Prospects. Separation and Purification Technology 2024, 331, 125640, doi:10.1016/j.seppur.2023.125640.

69. S V V S Narayana, P.; S V V Srihari, P. Biofilm Resistant Surfaces and Coatings on Implants: A Review. Materials Today: Proceedings 2019, 18, 4847–4853, doi:10.1016/j.matpr.2019.07.475.

70. Sousa-Cardoso, F.; Teixeira-Santos, R.; Campos, A.F.; Lima, M.; Gomes, L.C.; Soares, O.S.G.P.; Mergulhão, F.J. Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments. Nanomaterials 2023, 13, 381, doi:10.3390/nano13030381.

71. Samal, S.; Misra, M.; Rangarajan, V.; Chattopadhyay, S. Antimicrobial Nanoparticles Mediated Prevention and Control of Membrane Biofouling in Water and Wastewater Treatment: Current Trends and Future Perspectives. Applied Biochemistry and Biotechnology 2023, 195, 5458–5477, doi:10.1007/s12010-023-04497-8.

72. Learn, G.D.; Lai, E.J.; von Recum, H.A. Cyclodextrin Polymer Coatings Resist Protein Fouling, Mammalian Cell Adhesion, and Bacterial Attachment; Cold Spring Harbor Laboratory, 2020;

73. Zhang, H.; Zheng, Y.; Zhou, H.; Zhu, S.; Yang, J. Nanocellulose-Intercalated MXene NF Membrane with Enhanced Swelling Resistance for Highly Efficient Antibiotics Separation. Separation and Purification Technology 2023, 305, 122425, doi:10.1016/j.seppur.2022.122425.

74. Zheng, S.; Nie, Y.; Wang, Z.; Feng, X.; Zhu, J.; Lu, X.; Mu, L. Enhancing Wear Resistance and Mechanical Property of Epoxy Coating via “Roller Wheel” Liquid metal‐MXene. Journal of Applied Polymer Science 2024, 141, doi:10.1002/app.55511.

75. Zhou, Y.; Yin, L.; Xiang, S.; Yu, S.; Johnson, H.M.; Wang, S.; Yin, J.; Zhao, J.; Luo, Y.; Chu, P.K. Unleashing the Potential of MXene‐Based Flexible Materials for High‐Performance Energy Storage Devices. Advanced Science 2023, 11, doi:10.1002/advs.202304874.

76. Prachi Patel, special to C&EN Flexible MXene Coatings Stay Put on Any Surface. Chemical & Engineering News 2021, 7–7, doi:10.47287/cen-09932-scicon3.

77. Nagpal, N.; Tokmedash, M.A.; Chen, P.-Y.; VanEpps, J.S.; Min, J. Stretchable, Nano-Crumpled MXene Multilayers Impart Long-Term Antibacterial Surface Properties; Cold Spring Harbor Laboratory, 2023;

78. Zhang, H.; Tang, P.; Tang, Y.; Yang, K.; Wang, Q. MXene-Functionalized Light-Induced Antimicrobial and Waterproof Polyacrylate Coating for Cementitious Materials Protection. Polymers 2023, 15, 2076, doi:10.3390/polym15092076.

79. Ye, S.; Zhang, H.; Lai, H.; Xu, J.; Yu, L.; Ye, Z.; Yang, L. MXene: A Wonderful Nanomaterial in Antibacterial. Frontiers in Bioengineering and Biotechnology 2024, 12, doi:10.3389/fbioe.2024.1338539.

80. Li, X.; Xue, Z.; Sun, W.; Chu, J.; Wang, Q.; Tong, L.; Wang, K. Bio-Inspired Self-Healing MXene/Polyurethane Coating with Superior Active/Passive Anticorrosion Performance for Mg Alloy. Chemical Engineering Journal 2023, 454, 140187, doi:10.1016/j.cej.2022.140187.

81. Monastyreckis, G.; Stepura, A.; Soyka, Y.; Maltanava, H.; Poznyak, S.K.; Omastová, M.; Aniskevich, A.; Zeleniakiene, D. Strain Sensing Coatings for Large Composite Structures Based on 2D MXene Nanoparticles. Sensors 2021, 21, 2378, doi:10.3390/s21072378.

82. An, H.; Habib, T.; Shah, S.; Gao, H.; Radovic, M.; Green, M.J.; Lutkenhaus, J.L. Surface-Agnostic Highly Stretchable and Bendable Conductive MXene Multilayers. Science Advances 2018, 4, doi:10.1126/sciadv.aaq0118.

83. Wu, L.; Yuan, X.; Tang, Y.; Wageh, S.; Al-Hartomy, O.A.; Al-Sehemi, A.G.; Yang, J.; Xiang, Y.; Zhang, H.; Qin, Y. MXene Sensors Based on Optical and Electrical Sensing Signals: From Biological, Chemical, and Physical Sensing to Emerging Intelligent and Bionic Devices. PhotoniX 2023, 4, doi:10.1186/s43074-023-00091-7.

84. Chen, W.; Liu, L.-X.; Zhang, H.-B.; Yu, Z.-Z. Flexible, Transparent, and Conductive Ti3C2Tx MXene–Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding. ACS Nano 2020, 14, 16643–16653, doi:10.1021/acsnano.0c01635.

85. Hu, Y.; Wang, F.; Ye, H.; Jiang, J.; Li, S.; Dai, B.; Li, J.; Yang, J.; Song, X.; Zhang, J.; et al. MXene-Based Flexible Electronic Materials for Wound Infection Detection and Treatment. npj Flexible Electronics 2024, 8, doi:10.1038/s41528-024-00312-4.

86. Deng, Z.; Jiang, P.; Wang, Z.; Xu, L.; Yu, Z.; Zhang, H. Scalable Production of Catecholamine‐Densified MXene Coatings for Electromagnetic Shielding and Infrared Stealth. Small 2023, 19, doi:10.1002/smll.202304278.

87. Starodubtseva, A.; Kan, T.; Eskozha, D.; Egamkulov, M.; Malchik, F.; Trussov, I. Evaluation of Perspectives for the Synthesis of Ti3AlC2 in Kazakhstan for Supercapacitor Application. Chemical Bulletin of Kazakh National University 2024, 4–12, doi:10.15328/cb1389.

88. Talipova, A.B.; Buranych, V.V.; Savitskaya, I.S.; Bondar, O.V.; Turlybekuly, A.; Pogrebnjak, A.D. Synthesis, Properties, and Applications of Nanocomposite Materials Based on Bacterial Cellulose and MXene. Polymers 2023, 15, 4067, doi:10.3390/polym15204067.

89. Көркембай, Ж.; Алипбаев, А.Н.; Мансуров, З.А. Ti3C2 (MXene) Катализатор Қатысында Аммоний Перхлораты Негізіндегі Қатты Отынның Жану Үрдіс. BULLETIN of the L.N. Gumilyov Eurasian National University. Chemistry. Geography. Ecology Series 2024, 149, 67–78, doi:10.32523/2616-6771-2024-149-4-67-78.


Рецензия

Для цитирования:


Әліпұлы М., Нұрғалиев Н.Н., Асқарұлы К., Khalid M., Азат С. МАТЕРИАЛЫ MXENE: СОВРЕМЕННЫЕ МЕТОДЫ СИНТЕЗА, ЭКОЛОГИЧЕСКИ ЧИСТЫЕ ПОДХОДЫ И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ В КАЧЕСТВЕ ПОКРЫТИЙ И КОМПОЗИТНЫХ МАТЕРИАЛОВ. Вестник Университета Шакарима. Серия технические науки. 2025;(2(18)):487-501. https://doi.org/10.53360/2788-7995-2025-2(18)-60

For citation:


Alipuly M., Nurgaliyev N.N., Askaruly K., Khalid M., Azat S. MXENE MATERIALS: MODERN SYNTHESIS METHODS, ECO-FRIENDLY APPROACHES, AND PROSPECTS FOR APPLICATION AS COATINGS AND COMPOSITE MATERIALS. Bulletin of Shakarim University. Technical Sciences. 2025;(2(18)):487-501. (In Russ.) https://doi.org/10.53360/2788-7995-2025-2(18)-60

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X