MXENE МАТЕРИАЛДАРЫ: ЗАМАНАУИ СИНТЕЗ ӘДІСТЕРІ, ЭКОЛОГИЯЛЫҚ ТАЗА ТӘСІЛДЕР ЖӘНЕ ЖАБЫНДАР МЕН КОМПОЗИТТІК МАТЕРИАЛДАР РЕТІНДЕ ҚОЛДАНУ МҮМКІНДІКТЕРІ
https://doi.org/10.53360/2788-7995-2025-2(18)-60
Аңдатпа
Мақалада MXene, екіөлшемді материалдарды – ауыспалы металдардың карбидтері, нитридтері және карбонитридтерін синтездеудің заманауи әдістеріне шолу жасалған, әсіресе экологиялық тұрғыдан қауіпсіз тәсілдер мен оларды жабындар мен композиттер ретінде қолдану мүмкіндіктеріне баса назар аударылған. Фторлы қосылыстарды, мысалы, фторсутек қышқылын пайдалана отырып жүргізілетін дәстүрлі травление әдістері мен олардың экологиялық қатерлер секілді кемшіліктері қарастырылады. Сонымен қатар, қоршаған ортаға әсерді азайтып, өндірістің ауқымын кеңейтуге мүмкіндік беретін "жасыл" технологиялар – электрохимиялық травление және балқытылған тұздарды қолданатын әдістер сипатталады. MXene материалдарының ерекше қасиеттері – жоғары электрөткізгіштік, механикалық икемділік және гидрофильділік – олардың энергетика, электроника және экология салаларында кеңінен қолданылуына жол ашады. Мақалада MXene материалдарының коррозияға қарсы және бактерияларға қарсы жабындарда, электромагниттік кедергілерден қорғау мен сенсорлық жүйелерде қолданылу әлеуеті ерекше атап өтіледі. Сонымен қатар, Қазақстанда MXene қолдану мүмкіндіктері, соның ішінде жергілікті шикізатты пайдалана отырып суперконденсаторлар, биомедициналық материалдар және аэроғарыштық салаларға арналған катализаторлар өндіру мүмкіндігі талқыланады. Жергілікті синтездің экономикалық тиімділігі жоғары технологиялық салаларды дамыту перспективасын көрсетеді. Бұл жұмыс MXene саласындағы қазіргі жетістіктерді таныстырып, тұрақты материалтану бағыты бойынша болашақ зерттеулерге ынталандыруға бағытталған. Ол осы материалдардың функционалдығы мен экологиялық жауапкершілікті үйлестіре отырып, инновацияларды дамытудағы әлеуетін көрсетеді.
Авторлар туралы
M. ӘліпұлыҚазақстан
Мұхтар Әліпұлы – «Материалтану, нанотехнология және инженерлік физика» кафедрасының докторанты,
050013, Қазақстан Республикасы, Алматы қ., Сатпаев к-сі, 22
H. H. Нұрғалиев
Қазақстан
Нұржан Нұрлыбекұлы Нұрғалиев – PhD, қауымдастырылған профессор,
071410, Қазақстан Республикасы, Семей қ., Глинки к-сі, 20А
К. Асқарұлы
Қазақстан
Қыдыр Асқарұлы – техникалық ғылымдар докторы, қауымдастырылған профессор, «Жалпы физика» кафедрасы,
050013, Қазақстан Республикасы, Алматы қ., Сатпаев к-сі, 22
M. Khalid
Бірікккен Корольдік
Mohammad Khalid – инженерия докторы, Профессор,
G12 8QQ, Ұлыбритания, Глазго, Университет даңғылы
С. Азат
Қазақстан
Сейтхан Азат – Профессор, Инженерлі бейімді зертхана жетекшісі,
050013, Қазақстан Республикасы, Алматы қ., Сатпаев к-сі, 22
Әдебиет тізімі
1. Anasori, B.; Gogotsi, Y. Introduction to 2D Transition Metal Carbides and Nitrides (Mxenes). In 2D Metal Carbides and Nitrides (MXenes); Springer International Publishing: Cham, 2019; pp. 3–12.
2. Chia, X.; Pumera, M. Characteristics and Performance of Two-Dimensional Materials for Electrocatalysis. Nature Catalysis 2018, 1, 909–921, doi:10.1038/s41929-018-0181-7.
3. Ali, I.; Faraz Ud Din, M.; Gu, Z.-G. MXenes Thin Films: From Fabrication to Their Applications. Molecules 2022, 27, 4925, doi:10.3390/molecules27154925.
4. Hantanasirisakul, K.; Alhabeb, M.; Lipatov, A.; Maleski, K.; Anasori, B.; Salles, P.; Ieosakulrat, C.; Pakawatpanurut, P.; Sinitskii, A.; May, S.J.; et al. Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene. Chemistry of Materials 2019, 31, 2941–2951, doi:10.1021/acs.chemmater.9b00401.
5. He, X.; Cui, C.; Chen, Y.; Zhang, L.; Sheng, X.; Xie, D. MXene and Polymer Collision: Sparking the Future of High‐Performance Multifunctional Coatings. Advanced Functional Materials 2024, 34, doi:10.1002/adfm.202409675.
6. Liu, S.; Li, C.; Sun, Y.; Qiu, X.; Li, X.; Sun, C.; Liu, Y.; Yu, Q.; Yu, B.; Cai, M.; et al. BTA-P4444-Lig-Functionalized MXene to Prepare Anticorrosion and Wear-Resistant Integrated Waterborne Epoxy Composite Coating. ACS Sustainable Chemistry & Engineering 2024, 12, 8247–8260, doi:10.1021/acssuschemeng.4c02002.
7. Sheng, M.; Bin, X.; Yang, Y.; Chen, Z.; Que, W. A Green and Fluorine‐Free Fabrication of 3D Self‐Supporting MXene by Combining Anodic Electrochemical In Situ Etching with Cathodic Electrophoretic Deposition for Electrocatalytic Hydrogen Evolution. Advanced Materials Technologies 2023, 9, doi:10.1002/admt.202301694.
8. Amrillah, T.; Abdullah, C.; Hermawan, A.; Sari, F.; Alviani, V. Towards Greener and More Sustainable Synthesis of MXenes: A Review. Nanomaterials 2022, 12, 4280, doi:10.3390/nano12234280.
9. Kumar, S. Fluorine‐Free MXenes: Recent Advances, Synthesis Strategies, and Mechanisms. Small 2023, 20, doi:10.1002/smll.202308225.
10. Kulkarni, R.; Lingamdinne, L.P.; Koduru, J.R.; Karri, R.R.; Chang, Y.-Y.; Kailasa, S.K.; Mubarak, N.M. Recent Advanced Developments and Prospects of Surface Functionalized MXenes-Based Hybrid Composites toward Electrochemical Water Splitting Applications. ACS Materials Letters 2024, 6, 2660–2686, doi:10.1021/acsmaterialslett.4c00034.
11. Rahman, U.U.; Humayun, M.; Ghani, U.; Usman, M.; Ullah, H.; Khan, A.; El-Metwaly, N.M.; Khan, A. MXenes as Emerging Materials: Synthesis, Properties, and Applications. Molecules 2022, 27, 4909, doi:10.3390/molecules27154909.
12. Zhou, J.; Dahlqvist, M.; Björk, J.; Rosen, J. Atomic Scale Design of MXenes and Their Parent Materials─From Theoretical and Experimental Perspectives. Chemical Reviews 2023, 123, 13291–13322, doi:10.1021/acs.chemrev.3c00241.
13. Mim, M.; Habib, K.; Farabi, S.N.; Ali, S.A.; Zaed, M.A.; Younas, M.; Rahman, S. MXene: A Roadmap to Sustainable Energy Management, Synthesis Routes, Stabilization, and Economic Assessment. ACS Omega 2024, doi:10.1021/acsomega.4c04849.
14. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials 2011, 23, 4248–4253, doi:10.1002/adma.201102306.
15. Shuck, C.E.; Ventura-Martinez, K.; Goad, A.; Uzun, S.; Shekhirev, M.; Gogotsi, Y. Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. ACS Chemical Health & Safety 2021, 28, 326–338, doi:10.1021/acs.chas.1c00051.
16. Seredych, M.; Shuck, C.E.; Pinto, D.; Alhabeb, M.; Precetti, E.; Deysher, G.; Anasori, B.; Kurra, N.; Gogotsi, Y. High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis. Chemistry of Materials 2019, 31, 3324–3332, doi:10.1021/acs.chemmater.9b00397.
17. Biswas, S.; Alegaonkar, P.S. MXene: Evolutions in Chemical Synthesis and Recent Advances in Applications. Surfaces 2021, 5, 1–34, doi:10.3390/surfaces5010001.
18. Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Advanced Materials 2021, 33, doi:10.1002/adma.202103393.
19. Shekhirev, M.; Ogawa, Y.; Shuck, C.E.; Anayee, M.; Torita, T.; Gogotsi, Y. Delamination of Ti3C2Tx Nanosheets with NaCl and KCl for Improved Environmental Stability of MXene Films. ACS Applied Nano Materials 2022, 5, 16027–16032, doi:10.1021/acsanm.2c03701.
20. Wang, Y.; Zhou, B.; Tang, Q.; Yang, Y.; Pu, B.; Bai, J.; Xu, J.; Feng, Q.; Liu, Y.; Yang, W. Ultrafast Synthesis of MXenes in Minutes via Low‐Temperature Molten Salt Etching. Advanced Materials 2024, 36, doi:10.1002/adma.202410736.
21. Kim, Y.-J.; Kim, S.J.; Seo, D.; Chae, Y.; Anayee, M.; Lee, Y.; Gogotsi, Y.; Ahn, C.W.; Jung, H.-T. Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis. Chemistry of Materials 2021, 33, 6346–6355, doi:10.1021/acs.chemmater.1c01263.
22. Zhang, M.; Liang, R.; Yang, N.; Gao, R.; Zheng, Y.; Deng, Y.; Hu, Y.; Yu, A.; Chen, Z. Eutectic Etching toward In‐Plane Porosity Manipulation of Cl‐Terminated MXene for High‐Performance Dual‐Ion Battery Anode. Advanced Energy Materials 2021, 12, doi:10.1002/aenm.202102493.
23. Huang, P.; Han, W.-Q. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. Nano-Micro Letters 2023, 15, doi:10.1007/s40820-023-01039-z.
24. Kruger, D.D.; García, H.; Primo, A. Molten Salt Derived MXenes: Synthesis and Applications. Advanced Science 2024, doi:10.1002/advs.202307106.
25. Chan, K.C.; Guan, X.; Zhang, T.; Lin, K.; Huang, Y.; Lei, L.; Georgantas, Y.; Gogotsi, Y.; Bissett, M.A.; Kinloch, I.A. The Fabrication of Ti3C2 and Ti3CN MXenes by Electrochemical Etching. Journal of Materials Chemistry A12, 25165–25175, doi:10.1039/D4TA03457K.
26. Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. Journal of the American Chemical Society 2019, 141, 4730–4737, doi:10.1021/jacs.9b00574.
27. Qureshi, N.; Choi, C.; Doh, J. Expediting High‐Yield Mxene Carbides and Nitrides Synthesis for Next‐Generation 2D Materials. Advanced Materials Technologies 2023, 9, doi:10.1002/admt.202301611.
28. Zhang, S.; Meng, L.; Hu, Y.; Yuan, Z.; Li, J.; Liu, H. Green Synthesis and Biosafety Assessment of MXene. Small2023, 20, doi:10.1002/smll.202308600.
29. Hui, X.; Ge, X.; Zhao, R.; Li, Z.; Yin, L. Interface Chemistry on MXene‐Based Materials for Enhanced Energy Storage and Conversion Performance. Advanced Functional Materials 2020, 30, doi:10.1002/adfm.202005190.
30. Pang, S.-Y.; Wong, Y.-T.; Yuan, S.; Liu, Y.; Tsang, M.-K.; Yang, Z.; Huang, H.; Wong, W.-T.; Hao, J. Universal Strategy for HF-Free Facile and Rapid Synthesis of Two-Dimensional MXenes as Multifunctional Energy Materials. Journal of the American Chemical Society 2019, 141, 9610–9616, doi:10.1021/jacs.9b02578.
31. Huang, X.; Wu, P. A Facile, High‐Yield, and Freeze‐and‐Thaw‐Assisted Approach to Fabricate MXene with Plentiful Wrinkles and Its Application in On‐Chip Micro‐Supercapacitors. Advanced Functional Materials 2020, 30, doi:10.1002/adfm.201910048.
32. Wang, N.; Li, R.; Xu, P.; Li, Z. Scalable Synthesis of Ti3C2Tx–Arginine and Serine-Functionalized Carbon Quantum Dot Microspheres for High Performance Supercapacitors. New Journal of Chemistry 2023, 47, 1993–2002, doi:10.1039/d2nj05580e.
33. Adibah, N.A.; Zaine, S.N.A.; Shukur, M.F.A. Synthesis of Ti3C2 Mxene through In Situ HF and Direct HF Etching Procedures as Electrolyte Fillers in Dye-Sensitized Solar Cell. Materials Science Forum 2021, 1023, 15–20, doi:10.4028/www.scientific.net/msf.1023.15.
34. Long, Y.; Tao, Y.; Shang, T.; Yang, H.; Sun, Z.; Chen, W.; Yang, Q. Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective. Advanced Science 2022, 9, doi:10.1002/advs.202200296.
35. Huang, Y.; Lu, Q.; Wu, D.; Jiang, Y.; Liu, Z.; Chen, B.; Zhu, M.; Schmidt, O.G. Flexible MXene Films for Batteries and Beyond. Carbon Energy 2022, 4, 598–620, doi:10.1002/cey2.200.
36. Han, M.; Yin, X.; Wu, H.; Hou, Z.; Song, C.; Li, X.; Zhang, L.; Cheng, L. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. ACS Applied Materials & Interfaces 2016, 8, 21011–21019, doi:10.1021/acsami.6b06455.
37. Qian, W.; Si, Y.; Chen, P.; Tian, C.; Wang, Z.; Li, P.; Li, S.; He, D. Enhanced Oxidation‐Resistant and Conductivity in MXene Films with Seamless Heterostructure. Small 2024, 20, doi:10.1002/smll.202403149.
38. Firestein, K.L.; von Treifeldt, J.E.; Kvashnin, D.G.; Fernando, J.F.S.; Zhang, C.; Kvashnin, A.G.; Podryabinkin, E.V.; Shapeev, A.V.; Siriwardena, D.P.; Sorokin, P.B.; et al. Young’s Modulus and Tensile Strength of Ti3C2 MXene Nanosheets As Revealed by In Situ TEM Probing, AFM Nanomechanical Mapping, and Theoretical Calculations. Nano Letters 2020, 20, 5900–5908, doi:10.1021/acs.nanolett.0c01861.
39. Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Elastic Properties of 2D Ti 3 C 2 T X MXene Monolayers and Bilayers. Science Advances 2018, 4, doi:10.1126/sciadv.aat0491.
40. Ding, M.; Zhang, X.; Zhang, W. Ti3C2TX MXene@rGo Composite Self-Supporting Membrane and Its Welding Process. Journal of Physics: Conference Series 2023, 2566, 012116, doi:10.1088/1742-6596/2566/1/012116.
41. Ouyang, Y.; Qiu, L.; Bai, Y.; Yu, W.; Feng, Y. Synergistical Thermal Modulation Function of 2D Ti3C2 MXene Composite Nanosheets via Interfacial Structure Modification. iScience2022, 25, 104825, doi:10.1016/j.isci.2022.104825.
42. Li, L.; Cheng, Q. MXene Based Nanocomposite Films. Exploration 2022, 2, doi:10.1002/exp.20220049.
43. Shinde, P.A.; Patil, A.M.; Lee, S.; Jung, E.; Chan Jun, S. Two-Dimensional MXenes for Electrochemical Energy Storage Applications. Journal of Materials Chemistry A 2022, 10, 1105–1149, doi:10.1039/d1ta04642j.
44. Björk, J.; Rosen, J. Functionalizing MXenes by Tailoring Surface Terminations in Different Chemical Environments. Chemistry of Materials 2021, 33, 9108–9118, doi:10.1021/acs.chemmater.1c01264.
45. Ihsanullah, I. Potential of MXenes in Water Desalination: Current Status and Perspectives. Nano-Micro Letters 2020, 12, doi:10.1007/s40820-020-0411-9.
46. Kumar, J.A.; Prakash, P.; Krithiga, T.; Amarnath, D.J.; Premkumar, J.; Rajamohan, N.; Vasseghian, Y.; Saravanan, P.; Rajasimman, M. Methods of Synthesis, Characteristics, and Environmental Applications of MXene: A Comprehensive Review. Chemosphere 2022, 286, 131607, doi:10.1016/j.chemosphere.2021.131607.
47. Fang, R.; Lu, C.; Chen, A.; Wang, K.; Huang, H.; Gan, Y.; Liang, C.; Zhang, J.; Tao, X.; Xia, Y.; et al. 2 D MXene‐based Energy Storage Materials: Interfacial Structure Design and Functionalization. ChemSusChem 2019, 13, 1409–1419, doi:10.1002/cssc.201902537.
48. Tang, M.; Li, J.; Wang, Y.; Han, W.; Xu, S.; Lu, M.; Zhang, W.; Li, H. Surface Terminations of MXene: Synthesis, Characterization, and Properties. Symmetry 2022, 14, 2232, doi:10.3390/sym14112232.
49. Dhamodharan, D.; Al-Harthi, M.A.; Ramya, B.; Bafaqeer, A.; Alam, F. MXenes: A Promising Material with Multifunctional Applications. Journal of Environmental Chemical Engineering 2024, 12, 112316, doi:10.1016/j.jece.2024.112316.
50. Hong, S.; Al Marzooqi, F.; El-Demellawi, J.K.; Al Marzooqi, N.; Arafat, H.A.; Alshareef, H.N. Ion-Selective Separation Using MXene-Based Membranes: A Review. ACS Materials Letters 2023, 5, 341–356, doi:10.1021/acsmaterialslett.2c00914.
51. Repon, Md.R.; Mikučionienė, D.; Paul, T.K.; Al-Humaidi, J.Y.; Rahman, M.M.; Islam, T.; Shukhratov, S. Architectural Design and Affecting Factors of MXene-Based Textronics for Real-World Application. RSC Advances 2024, 14, 16093–16116, doi:10.1039/d4ra01820f.
52. Shi, K.; Meng, X.; Xiao, S.; Chen, G.; Wu, H.; Zhou, C.; Jiang, S.; Chu, P.K. MXene Coatings: Novel Hydrogen Permeation Barriers for Pipe Steels. Nanomaterials 2021, 11, 2737, doi:10.3390/nano11102737.
53. Wang, Y.; Qi, Q.; Yin, G.; Wang, W.; Yu, D. Flexible, Ultralight, and Mechanically Robust Waterborne Polyurethane/Ti3C2Tx MXene/Nickel Ferrite Hybrid Aerogels for High-Performance Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces 2021, 13, 21831–21843, doi:10.1021/acsami.1c04962.
54. He, Y.; Zhang, Y.; Xu, X.; Zhu, Y.; Liu, Y.; Yuan, J.; Men, X. Enhancement on the Thermal and Tribological Behaviors of Polyurethane/Epoxy-Based Interpenetrating Network Composites by Orientationally Aligned CNF/MXene/WPU Aerogels. Composites Part A: Applied Science and Manufacturing 2024, 187, 108477, doi:10.1016/j.compositesa.2024.108477.
55. Giménez, R.; Serrano, B.; San-Miguel, V.; Cabanelas, J.C. Recent Advances in MXene/Epoxy Composites: Trends and Prospects. Polymers 2022, 14, 1170, doi:10.3390/polym14061170.
56. Fugolin, A.P.P.; Costa, A.R.; Correr-Sobrinho, L.; Crystal Chaw, R.; Lewis, S.; Ferracane, J.L.; Pfeifer, C.S. Toughening and Polymerization Stress Control in Composites Using Thiourethane-Treated Fillers. Scientific Reports 2021, 11, doi:10.1038/s41598-021-87151-9.
57. Liu, S.; Lian, Y.; Zhao, Y.; Hou, H.; Ren, J.; Elsharkawy, E.R.; El-Bahy, S.M.; El-Bahy, Z.M.; Wu, N. Recent Advances of MXene-Based Nanocomposites towards Microwave Absorption: A Review. Advanced Composites and Hybrid Materials 2025, 8, doi:10.1007/s42114-024-01145-5.
58. Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M.-K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C.M. Anomalous Absorption of Electromagnetic Waves by 2D Transition Metal Carbonitride Ti 3 CNT X (MXene). Science 2020, 369, 446–450, doi:10.1126/science.aba7977.
59. Wang, X.-Y.; Liao, S.-Y.; Wan, Y.-J.; Zhu, P.-L.; Hu, Y.-G.; Zhao, T.; Sun, R.; Wong, C.-P. Electromagnetic Interference Shielding Materials: Recent Progress, Structure Design, and Future Perspective. Journal of Materials Chemistry C 2022, 10, 44–72, doi:10.1039/d1tc04702g.
60. Pieters, K.; Mekonnen, T.H. Progress in Waterborne Polymer Dispersions for Coating Applications: Commercialized Systems and New Trends. RSC Sustainability 2024, 2, 3704–3729, doi:10.1039/d4su00267a.
61. An, H.; Jiang, C.; Yin, X.; Liu, K.; Liang, S.; Wang, X.; Xiao, J.; Zhao, X.; Sun, Z. Polyaniline/TiO2/MXene Ternary Composites for Enhancing Corrosion Resistance of Waterborne Epoxy Coatings. ACS Applied Nano Materials 2024, 8, 340–350, doi:10.1021/acsanm.4c05723.
62. Wang, P.; Zhang, C.; Wu, M.; Zhang, J.; Ling, X.; Yang, L. Scalable Solution-Processed Fabrication Approach for High-Performance Silver Nanowire/MXene Hybrid Transparent Conductive Films. Nanomaterials 2021, 11, 1360, doi:10.3390/nano11061360.
63. Qiu, X.; Li, C.; Sun, Y.; Liu, Y.; Wang, X.; Sun, S.; Yu, Q.; Yu, B.; Cai, M.; Zhou, F. Study on Anticorrosion and Wear Resistance of Self-Healing Coating Based on Functional MXene and Dynamic Disulfide Bond. ACS Applied Polymer Materials 2024, 6, 11392–11405, doi:10.1021/acsapm.4c01983.
64. Akuzum, B.; Maleski, K.; Anasori, B.; Lelyukh, P.; Alvarez, N.J.; Kumbur, E.C.; Gogotsi, Y. Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes. ACS Nano 2018, 12, 2685–2694, doi:10.1021/acsnano.7b08889.
65. Chen, M.; Li, L.; Deng, Z.; Min, P.; Yu, Z.-Z.; Zhang, C.J.; Zhang, H.-B. Two-Dimensional Janus MXene Inks for Versatile Functional Coatings on Arbitrary Substrates. ACS Applied Materials & Interfaces 2023, 15, 4591–4600, doi:10.1021/acsami.2c20930.
66. Dwivedi, N.; Dhand, C.; Kumar, P.; Srivastava, A.K. Emergent 2D Materials for Combating Infectious Diseases: The Potential of MXenes and MXene–Graphene Composites to Fight against Pandemics. Materials Advances 2021, 2, 2892–2905, doi:10.1039/d1ma00003a.
67. Wang, Z.; Cheng, Z.; Fang, C.; Hou, X.; Xie, L. Recent Advances in MXenes Composites for Electromagnetic Interference Shielding and Microwave Absorption. Composites Part A: Applied Science and Manufacturing 2020, 136, 105956, doi:10.1016/j.compositesa.2020.105956.
68. Sun, Y.; Lu, J.; Li, S.; Dai, C.; Zou, D.; Jing, W. MXene-Based Membranes in Water Treatment: Current Status and Future Prospects. Separation and Purification Technology 2024, 331, 125640, doi:10.1016/j.seppur.2023.125640.
69. S V V S Narayana, P.; S V V Srihari, P. Biofilm Resistant Surfaces and Coatings on Implants: A Review. Materials Today: Proceedings 2019, 18, 4847–4853, doi:10.1016/j.matpr.2019.07.475.
70. Sousa-Cardoso, F.; Teixeira-Santos, R.; Campos, A.F.; Lima, M.; Gomes, L.C.; Soares, O.S.G.P.; Mergulhão, F.J. Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments. Nanomaterials 2023, 13, 381, doi:10.3390/nano13030381.
71. Samal, S.; Misra, M.; Rangarajan, V.; Chattopadhyay, S. Antimicrobial Nanoparticles Mediated Prevention and Control of Membrane Biofouling in Water and Wastewater Treatment: Current Trends and Future Perspectives. Applied Biochemistry and Biotechnology 2023, 195, 5458–5477, doi:10.1007/s12010-023-04497-8.
72. Learn, G.D.; Lai, E.J.; von Recum, H.A. Cyclodextrin Polymer Coatings Resist Protein Fouling, Mammalian Cell Adhesion, and Bacterial Attachment; Cold Spring Harbor Laboratory, 2020;
73. Zhang, H.; Zheng, Y.; Zhou, H.; Zhu, S.; Yang, J. Nanocellulose-Intercalated MXene NF Membrane with Enhanced Swelling Resistance for Highly Efficient Antibiotics Separation. Separation and Purification Technology 2023, 305, 122425, doi:10.1016/j.seppur.2022.122425.
74. Zheng, S.; Nie, Y.; Wang, Z.; Feng, X.; Zhu, J.; Lu, X.; Mu, L. Enhancing Wear Resistance and Mechanical Property of Epoxy Coating via “Roller Wheel” Liquid metal‐MXene. Journal of Applied Polymer Science 2024, 141, doi:10.1002/app.55511.
75. Zhou, Y.; Yin, L.; Xiang, S.; Yu, S.; Johnson, H.M.; Wang, S.; Yin, J.; Zhao, J.; Luo, Y.; Chu, P.K. Unleashing the Potential of MXene‐Based Flexible Materials for High‐Performance Energy Storage Devices. Advanced Science 2023, 11, doi:10.1002/advs.202304874.
76. Prachi Patel, special to C&EN Flexible MXene Coatings Stay Put on Any Surface. Chemical & Engineering News 2021, 7–7, doi:10.47287/cen-09932-scicon3.
77. Nagpal, N.; Tokmedash, M.A.; Chen, P.-Y.; VanEpps, J.S.; Min, J. Stretchable, Nano-Crumpled MXene Multilayers Impart Long-Term Antibacterial Surface Properties; Cold Spring Harbor Laboratory, 2023;
78. Zhang, H.; Tang, P.; Tang, Y.; Yang, K.; Wang, Q. MXene-Functionalized Light-Induced Antimicrobial and Waterproof Polyacrylate Coating for Cementitious Materials Protection. Polymers 2023, 15, 2076, doi:10.3390/polym15092076.
79. Ye, S.; Zhang, H.; Lai, H.; Xu, J.; Yu, L.; Ye, Z.; Yang, L. MXene: A Wonderful Nanomaterial in Antibacterial. Frontiers in Bioengineering and Biotechnology 2024, 12, doi:10.3389/fbioe.2024.1338539.
80. Li, X.; Xue, Z.; Sun, W.; Chu, J.; Wang, Q.; Tong, L.; Wang, K. Bio-Inspired Self-Healing MXene/Polyurethane Coating with Superior Active/Passive Anticorrosion Performance for Mg Alloy. Chemical Engineering Journal 2023, 454, 140187, doi:10.1016/j.cej.2022.140187.
81. Monastyreckis, G.; Stepura, A.; Soyka, Y.; Maltanava, H.; Poznyak, S.K.; Omastová, M.; Aniskevich, A.; Zeleniakiene, D. Strain Sensing Coatings for Large Composite Structures Based on 2D MXene Nanoparticles. Sensors 2021, 21, 2378, doi:10.3390/s21072378.
82. An, H.; Habib, T.; Shah, S.; Gao, H.; Radovic, M.; Green, M.J.; Lutkenhaus, J.L. Surface-Agnostic Highly Stretchable and Bendable Conductive MXene Multilayers. Science Advances 2018, 4, doi:10.1126/sciadv.aaq0118.
83. Wu, L.; Yuan, X.; Tang, Y.; Wageh, S.; Al-Hartomy, O.A.; Al-Sehemi, A.G.; Yang, J.; Xiang, Y.; Zhang, H.; Qin, Y. MXene Sensors Based on Optical and Electrical Sensing Signals: From Biological, Chemical, and Physical Sensing to Emerging Intelligent and Bionic Devices. PhotoniX 2023, 4, doi:10.1186/s43074-023-00091-7.
84. Chen, W.; Liu, L.-X.; Zhang, H.-B.; Yu, Z.-Z. Flexible, Transparent, and Conductive Ti3C2Tx MXene–Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding. ACS Nano 2020, 14, 16643–16653, doi:10.1021/acsnano.0c01635.
85. Hu, Y.; Wang, F.; Ye, H.; Jiang, J.; Li, S.; Dai, B.; Li, J.; Yang, J.; Song, X.; Zhang, J.; et al. MXene-Based Flexible Electronic Materials for Wound Infection Detection and Treatment. npj Flexible Electronics 2024, 8, doi:10.1038/s41528-024-00312-4.
86. Deng, Z.; Jiang, P.; Wang, Z.; Xu, L.; Yu, Z.; Zhang, H. Scalable Production of Catecholamine‐Densified MXene Coatings for Electromagnetic Shielding and Infrared Stealth. Small 2023, 19, doi:10.1002/smll.202304278.
87. Starodubtseva, A.; Kan, T.; Eskozha, D.; Egamkulov, M.; Malchik, F.; Trussov, I. Evaluation of Perspectives for the Synthesis of Ti3AlC2 in Kazakhstan for Supercapacitor Application. Chemical Bulletin of Kazakh National University 2024, 4–12, doi:10.15328/cb1389.
88. Talipova, A.B.; Buranych, V.V.; Savitskaya, I.S.; Bondar, O.V.; Turlybekuly, A.; Pogrebnjak, A.D. Synthesis, Properties, and Applications of Nanocomposite Materials Based on Bacterial Cellulose and MXene. Polymers 2023, 15, 4067, doi:10.3390/polym15204067.
89. Көркембай, Ж.; Алипбаев, А.Н.; Мансуров, З.А. Ti3C2 (MXene) Катализатор Қатысында Аммоний Перхлораты Негізіндегі Қатты Отынның Жану Үрдіс. BULLETIN of the L.N. Gumilyov Eurasian National University. Chemistry. Geography. Ecology Series 2024, 149, 67–78, doi:10.32523/2616-6771-2024-149-4-67-78.
Рецензия
Дәйектеу үшін:
Әліпұлы M., Нұрғалиев H.H., Асқарұлы К., Khalid M., Азат С. MXENE МАТЕРИАЛДАРЫ: ЗАМАНАУИ СИНТЕЗ ӘДІСТЕРІ, ЭКОЛОГИЯЛЫҚ ТАЗА ТӘСІЛДЕР ЖӘНЕ ЖАБЫНДАР МЕН КОМПОЗИТТІК МАТЕРИАЛДАР РЕТІНДЕ ҚОЛДАНУ МҮМКІНДІКТЕРІ. Шәкәрім Университетінің Хабаршысы. Техникалық ғылымдар сериясы. 2025;(2(18)):487-501. https://doi.org/10.53360/2788-7995-2025-2(18)-60
For citation:
Alipuly M., Nurgaliyev N.N., Askaruly K., Khalid M., Azat S. MXENE MATERIALS: MODERN SYNTHESIS METHODS, ECO-FRIENDLY APPROACHES, AND PROSPECTS FOR APPLICATION AS COATINGS AND COMPOSITE MATERIALS. Bulletin of Shakarim University. Technical Sciences. 2025;(2(18)):487-501. (In Russ.) https://doi.org/10.53360/2788-7995-2025-2(18)-60