MXENE МАТЕРИАЛДАРЫ: ЗАМАНАУИ СИНТЕЗ ӘДІСТЕРІ, ЭКОЛОГИЯЛЫҚ ТАЗА ТӘСІЛДЕР ЖӘНЕ ЖАБЫНДАР МЕН КОМПОЗИТТІК МАТЕРИАЛДАР РЕТІНДЕ ҚОЛДАНУ МҮМКІНДІКТЕРІ
https://doi.org/10.53360/2788-7995-2025-2(18)-60
Аңдатпа
Мақалада MXene, екіөлшемді материалдарды – ауыспалы металдардың карбидтері, нитридтері және карбонитридтерін синтездеудің заманауи әдістеріне шолу жасалған, әсіресе экологиялық тұрғыдан қауіпсіз тәсілдер мен оларды жабындар мен композиттер ретінде қолдану мүмкіндіктеріне баса назар аударылған. Фторлы қосылыстарды, мысалы, фторсутек қышқылын пайдалана отырып жүргізілетін дәстүрлі травление әдістері мен олардың экологиялық қатерлер секілді кемшіліктері қарастырылады. Сонымен қатар, қоршаған ортаға әсерді азайтып, өндірістің ауқымын кеңейтуге мүмкіндік беретін "жасыл" технологиялар – электрохимиялық травление және балқытылған тұздарды қолданатын әдістер сипатталады. MXene материалдарының ерекше қасиеттері – жоғары электрөткізгіштік, механикалық икемділік және гидрофильділік – олардың энергетика, электроника және экология салаларында кеңінен қолданылуына жол ашады. Мақалада MXene материалдарының коррозияға қарсы және бактерияларға қарсы жабындарда, электромагниттік кедергілерден қорғау мен сенсорлық жүйелерде қолданылу әлеуеті ерекше атап өтіледі. Сонымен қатар, Қазақстанда MXene қолдану мүмкіндіктері, соның ішінде жергілікті шикізатты пайдалана отырып суперконденсаторлар, биомедициналық материалдар және аэроғарыштық салаларға арналған катализаторлар өндіру мүмкіндігі талқыланады. Жергілікті синтездің экономикалық тиімділігі жоғары технологиялық салаларды дамыту перспективасын көрсетеді. Бұл жұмыс MXene саласындағы қазіргі жетістіктерді таныстырып, тұрақты материалтану бағыты бойынша болашақ зерттеулерге ынталандыруға бағытталған. Ол осы материалдардың функционалдығы мен экологиялық жауапкершілікті үйлестіре отырып, инновацияларды дамытудағы әлеуетін көрсетеді.
Авторлар туралы
M. ӘліпұлыҚазақстан
Мұхтар Әліпұлы – «Материалтану, нанотехнология және инженерлік физика» кафедрасының докторанты,
050013, Қазақстан Республикасы, Алматы қ., Сатпаев к-сі, 22
H. H. Нұрғалиев
Қазақстан
Нұржан Нұрлыбекұлы Нұрғалиев – PhD, қауымдастырылған профессор,
071410, Қазақстан Республикасы, Семей қ., Глинки к-сі, 20А
К. Асқарұлы
Қазақстан
Қыдыр Асқарұлы – техникалық ғылымдар докторы, қауымдастырылған профессор, «Жалпы физика» кафедрасы,
050013, Қазақстан Республикасы, Алматы қ., Сатпаев к-сі, 22
M. Khalid
Бірікккен Корольдік
Mohammad Khalid – инженерия докторы, Профессор,
G12 8QQ, Ұлыбритания, Глазго, Университет даңғылы
С. Азат
Қазақстан
Сейтхан Азат – Профессор, Инженерлі бейімді зертхана жетекшісі,
050013, Қазақстан Республикасы, Алматы қ., Сатпаев к-сі, 22
Әдебиет тізімі
1. Anasori B. Introduction to 2D Transition Metal Carbides and Nitrides (Mxenes) / B. Anasori, Y. Gogotsi // In 2D Metal Carbides and Nitrides (MXenes); Springer International Publishing: Cham. – 2019. – Р. 3-12.
2. Chia X. Characteristics and Performance of Two-Dimensional Materials for Electrocatalysis / X. Chia, M. Pumera // Nature Catalysis. – 2018. – № 1. – Р. 909-921. https://doi.org/10.1038/s41929018-0181-7.
3. Ali I. MXenes Thin Films: From Fabrication to Their Applications / I. Ali, M. Faraz Ud Din, Z.-G. Gu // Molecules. – 2022. – № 27. – Р. 4925. https://doi.org/10.3390/molecules27154925.
4. Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene / K. Hantanasirisakul et al // Chemistry of Materials. – 2019. – № 31. – Р. 2941-2951. https://doi.org/10.1021/acs.chemmater.9b00401.
5. MXene and Polymer Collision: Sparking the Future of High‐Performance Multifunctional Coatings / Х. He et al // Advanced Functional Materials. – 2024. – № 34. – https://doi.org/10.1002/adfm.202409675.
6. BTA-P4444-Lig-Functionalized MXene to Prepare Anticorrosion and Wear-Resistant Integrated Waterborne Epoxy Composite Coating / S. Liu et al // ACS Sustainable Chemistry & Engineering. – 2024. – № 12. – Р. 8247-8260. https://doi.org/10.1021/acssuschemeng.4c02002.
7. A Green and Fluorine‐Free Fabrication of 3D Self‐Supporting MXene by Combining Anodic Electrochemical In Situ Etching with Cathodic Electrophoretic Deposition for Electrocatalytic Hydrogen Evolution / M. Sheng et al // Advanced Materials Technologies. – 2023. – № 9. https://doi.org/10.1002/admt.202301694.
8. Towards Greener and More Sustainable Synthesis of MXenes: A Review / Т. Amrillah et al // Nanomaterials. – 2022. – № 12. – Р. 4280. https://doi.org/10.3390/nano12234280.
9. Kumar S. Fluorine‐Free MXenes: Recent Advances, Synthesis Strategies, and Mechanisms / S. Kumar // Small. – 2023. – № 20. https://doi.org/10.1002/smll.202308225.
10. Recent Advanced Developments and Prospects of Surface Functionalized MXenes-Based Hybrid Composites toward Electrochemical Water Splitting Applications / R. Kulkarni et al // ACS Materials Letters. – 2024. – № 6. – Р. 2660-2686. https://doi.org/10.1021/acsmaterialslett.4c00034.
11. MXenes as Emerging Materials: Synthesis, Properties, and Applications / U.U. Rahman et al // Molecules. – 2022. – № 27. – Р. 4909. https://doi.org/10.3390/molecules27154909.
12. Atomic Scale Design of MXenes and Their Parent Materials-From Theoretical and Experimental Perspectives / J. Zhou et al // Chemical Reviews. – 2023. – № 123. – Р. 13291-13322. https://doi.org/10.1021/acs.chemrev.3c00241.
13. MXene: A Roadmap to Sustainable Energy Management, Synthesis Routes, Stabilization, and Economic Assessment / М. Mim et al // ACS Omega. – 2024. https://doi.org/10.1021/acsomega.4c04849.
14. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 / М. Naguib et al // Advanced Materials. – 2011. – № 23. – Р. 4248-4253. https://doi.org/10.1002/adma.201102306.
15. Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis / С.Е. Shuck et al // ACS Chemical Health & Safety. – 2021. – № 28. – Р. 326-338. https://doi.org/10.1021/acs.chas.1c00051.
16. High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis / М. Seredych et al // Chemistry of Materials. – 2019. – № 31. – Р. 3324-3332. https://doi.org/10.1021/acs.chemmater.9b00397.
17. Biswas S. MXene: Evolutions in Chemical Synthesis and Recent Advances in Applications / S. Biswas, P.S. Alegaonkar // Surfaces. – 2021. – № 5. – Р. 1-34. https://doi.org/10.3390/surfaces5010001.
18. Naguib M. Ten Years of Progress in the Synthesis and Development of MXenes / M. Naguib, M.W. Barsoum, Y. Gogotsi // Advanced Materials. – 2021. – № 33. https://doi.org/10.1002/adma.202103393.
19. Delamination of Ti3C2Tx Nanosheets with NaCl and KCl for Improved Environmental Stability of MXene Films / М. Shekhirev et al // ACS Applied Nano Materials. – 2022. – № 5. – Р. 16027-16032. https://doi.org/10.1021/acsanm.2c03701.
20. Ultrafast Synthesis of MXenes in Minutes via Low‐Temperature Molten Salt Etching / Y. Wang et al // Advanced Materials. – 2024. – № 36. https://doi.org/10.1002/adma.202410736.
21. Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis / Y.-J. Kim et al // Chemistry of Materials. – 2021. – № 33. – Р. 6346-6355. https://doi.org/10.1021/acs.chemmater.1c01263.
22. Eutectic Etching toward In‐Plane Porosity Manipulation of Cl‐Terminated MXene for High-Performance Dual‐Ion Battery Anode / M. Zhang et al // Advanced Energy Materials. – 2021. – № 12. https://doi.org/10.1002/aenm.202102493.
23. Huang P. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes / P. Huang, W.-Q. Han // Nano-Micro Letters. – 2023. – № 15. https://doi.org/10.1007/s40820-023-01039-z.
24. Kruger D.D. Molten Salt Derived MXenes: Synthesis and Applications / D.D. Kruger, H. García, A. Primo // Advanced Science. – 2024. https://doi.org/10.1002/advs.202307106.
25. The Fabrication of Ti3C2 and Ti3CN MXenes by Electrochemical Etching / K.C. Chan et al // Journal of Materials Chemistry A12. – Р. 25165-25175. https://doi.org/10.1039/D4TA03457K.
26. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes / М. Li et al // Journal of the American Chemical Society. – 2019. – № 141. – Р. 4730-4737. https://doi.org/10.1021/jacs.9b00574.
27. Qureshi N. Expediting High‐Yield Mxene Carbides and Nitrides Synthesis for Next‐Generation 2D Materials / N. Qureshi, С. Choi, J. Doh // Advanced Materials Technologies. – 2023. – № 9. https://doi.org/10.1002/admt.202301611.
28. Green Synthesis and Biosafety Assessment of MXene / S. Zhang et al // Small. – 2023. – № 20. https://doi.org/10.1002/smll.202308600.
29. Interface Chemistry on MXene‐Based Materials for Enhanced Energy Storage and Conversion Performance / Х. Hui et al // Advanced Functional Materials. – 2020. – № 30. https://doi.org/10.1002/adfm.202005190.
30. Pulsed Electrochemical Exfoliation for an HF‐Free Sustainable MXene Synthesis / М. Ostermann et al // Small. – 2025. https://doi.org/10.1002/smll.202500807.
31. Universal Strategy for HF-Free Facile and Rapid Synthesis of Two-Dimensional MXenes as Multifunctional Energy Materials / S.-Y. Pang et al // Journal of the American Chemical Society. – 2019. – № 141. – Р. 9610-9616. https://doi.org/10.1021/jacs.9b02578.
32. Huang,X. A Facile, High‐Yield, and Freeze‐and‐Thaw‐Assisted Approach to Fabricate MXene with Plentiful Wrinkles and Its Application in On‐Chip Micro‐Supercapacitors / X. Huang, P. Wu // Advanced Functional Materials. – 2020. https://doi.org/10.1002/adfm.201910048.
33. Scalable Synthesis of Ti3C2Tx–Arginine and Serine-Functionalized Carbon Quantum Dot Microspheres for High Performance Supercapacitors / N. Wang et al // New Journal of Chemistry. – 2023. – № 47. – Р. 1993-2002. https://doi.org/10.1039/d2nj05580e.
34. Adibah N.A. Synthesis of Ti3C2 Mxene through In Situ HF and Direct HF Etching Procedures as Electrolyte Fillers in Dye-Sensitized Solar Cell / N.A. Adibah, S.N.A. Zaine, M.F.A. Shukur // Materials Science Forum. – 2021. – № 1023. – Р. 15-20. https://doi.org/10.4028/www.scientific.net/msf.1023.15.
35. Energy-Efficient Synthesis of Ti3C2Tx MXene for Electromagnetic Shielding / Н. Renuka et al // Materials Science in Semiconductor Processing. – 2025. – № 185. – Р. 108966. https://doi.org/10.1016/j.mssp.2024.108966.
36. Synthesis of a 2D Tungsten MXene for Electrocatalysis / А. Thakur et al // Nature Synthesis. – 2025. https://doi.org/10.1038/s44160-025-00773-z.
37. Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective / Y. Long et al // Advanced Science. – 2022. – № 9. https://doi.org/10.1002/advs.202200296.
38. MXenes for Sustainable Energy: A Comprehensive Review on Conservation and Storage Applications / М. Jussambayev et al // Carbon Trends. – 2025. – № 19. – Р. 100471. https://doi.org/10.1016/j.cartre.2025.100471.
39. Flexible MXene Films for Batteries and Beyond / Y. Huang et al // Carbon Energy. – 2022. – № 4. – Р. 598-620. https://doi.org/10.1002/cey2.200.
40. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band / М. Han et al // ACS Applied Materials & Interfaces. – 2016. – № 8. – Р. 21011-21019. https://doi.org/10.1021/acsami.6b06455.
41. Enhanced Oxidation‐Resistant and Conductivity in MXene Films with Seamless Heterostructure / W. Qian et al // Small. – 2024. – № 20. https://doi.org/10.1002/smll.202403149.
42. Young’s Modulus and Tensile Strength of Ti3C2 MXene Nanosheets As Revealed by In Situ TEM Probing, AFM Nanomechanical Mapping, and Theoretical Calculations / K.L. Firestein et al // Nano Letters. – 2020. – № 20. – Р. 5900-5908. https://doi.org/10.1021/acs.nanolett.0c01861.
43. Elastic Properties of 2D Ti3C2TX MXene Monolayers and Bilayers / А. Lipatov et al // Science Advances. – 2018. – № 4. https://doi.org/10.1126/sciadv.aat0491.
44. Ding M. Ti3C2TX MXene@rGo Composite Self-Supporting Membrane and Its Welding Process / M. Ding, X. Zhang, W. Zhang // Journal of Physics: Conference Series. – 2023. – № 2566. – Р. 012116. https://doi.org/10.1088/1742-6596/2566/1/012116.
45. Synergistical Thermal Modulation Function of 2D Ti3C2 MXene Composite Nanosheets via Interfacial Structure Modification / Y. Ouyang et al // iScience. – 2022. – № 25. – Р. 104825. https://doi.org/10.1016/j.isci.2022.104825.
46. Li L. MXene Based Nanocomposite Films / L. Li, Q. Cheng // Exploration. – 2022. – № 2. https://doi.org/10.1002/exp.20220049.
47. Two-Dimensional MXenes for Electrochemical Energy Storage Applications / Р.А. Shinde et al // Journal of Materials Chemistry A. – 2022. – № 10. – Р. 1105-1149. https://doi.org/10.1039/d1ta04642j.
48. Björk J. Functionalizing MXenes by Tailoring Surface Terminations in Different Chemical
49. Environments / J. Björk, J. Rosen // Chemistry of Materials. – 2021. – № 33. – Р. 9108-9118. https://doi.org/10.1021/acs.chemmater.1c01264.
50. Ihsanullah I. Potential of MXenes in Water Desalination: Current Status and Perspectives / I. Ihsanullah // Nano-Micro Letters. – 2020. – № 12. https://doi.org/10.1007/s40820-020-0411-9.
51. Methods of Synthesis, Characteristics, and Environmental Applications of MXene: A Comprehensive Review / J.A. Kumar et al // Chemosphere. – 2022. – № 286. – Р. 131607. https://doi.org/10.1016/j.chemosphere.2021.131607.
52. 2 D MXene‐based Energy Storage Materials: Interfacial Structure Design and Functionalization / R. Fang et al // ChemSusChem. – 2019. – № 13. – Р. 1409-1419. https://doi.org/10.1002/cssc.201902537.
53. Surface Terminations of MXene: Synthesis, Characterization, and Properties / М. Tang et al // Symmetry. – 2022. – № 14. – Р. 2232. https://doi.org/10.3390/sym14112232.
54. MXenes: A Promising Material with Multifunctional Applications / D. Dhamodharan et al // Journal of Environmental Chemical Engineering. – 2024. – № 12. – Р. 112316. https://doi.org/10.1016/j.jece.2024.112316.
55. Double Transition Metal MXenes for Enhanced Electrochemical Applications: Challenges and Opportunities / F. Bibi et al // EcoMat. – 2024. – № 6. https://doi.org/10.1002/eom2.12485.
56. Ion-Selective Separation Using MXene-Based Membranes: A Review / S. Hong et al // ACS Materials Letters. – 2023. – № 5. – Р. 341-356. https://doi.org/10.1021/acsmaterialslett.2c00914.
57. Architectural Design and Affecting Factors of MXene-Based Textronics for Real-World Application / Md.R. Repon et al // RSC Advances. – 2024. – № 14. – Р. 16093-16116. https://doi.org/10.1039/d4ra01820f.
58. MXene Coatings: Novel Hydrogen Permeation Barriers for Pipe Steels / K. Shi et al // Nanomaterials. – 2021. – № 11. – Р. 2737. https://doi.org/10.3390/nano11102737.
59. Flexible, Ultralight, and Mechanically Robust Waterborne Polyurethane/Ti3C2Tx MXene/Nickel Ferrite Hybrid Aerogels for High-Performance Electromagnetic Interference Shielding / Y. Wang et al // ACS Applied Materials & Interfaces. – 2021. – № 13. – Р. 21831-21843. https://doi.org/10.1021/acsami.1c04962.
60. Enhancement on the Thermal and Tribological Behaviors of Polyurethane/Epoxy-Based Interpenetrating Network Composites by Orientationally Aligned CNF/MXene/WPU Aerogels / Y. He et al // Composites Part A: Applied Science and Manufacturing. – 2024. – № 187. – Р. 108477. https://doi.org/10.1016/j.compositesa.2024.108477.
61. Recent Advances in MXene/Epoxy Composites: Trends and Prospects / R. Giménez et al // Polymers. – 2022. – № 14. – Р. 1170. https://doi.org/10.3390/polym14061170.
62. Toughening and Polymerization Stress Control in Composites Using Thiourethane-Treated Fillers / А.Р.Р. Fugolin et al // Scientific Reports. – 2021. – № 11. https://doi.org/10.1038/s41598021-87151-9.
63. Recent Advances of MXene-Based Nanocomposites towards Microwave Absorption: A Review / S. Liu et al // Advanced Composites and Hybrid Materials. – 2025. – № 8. https://doi.org/10.1007/s42114-024-01145-5.
64. Anomalous Absorption of Electromagnetic Waves by 2D Transition Metal Carbonitride Ti3CNTX (MXene) / А. Iqbal et al // Science. – 2020. – № 369. – Р. 446-450. https://doi.org/10.1126/science.aba7977.
65. Electromagnetic Interference Shielding Materials: Recent Progress, Structure Design, and Future Perspective / X.-Y. Wang et al // Journal of Materials Chemistry. – 2022. – № 10. – Р. 44-72. https://doi.org/10.1039/d1tc04702g.
66. Pieters K. Progress in Waterborne Polymer Dispersions for Coating Applications: Commercialized Systems and New Trends / K. Pieters, T.H. Mekonnen // RSC Sustainability. – 2024. – № 2. – Р. 3704-3729. https://doi.org/10.1039/d4su00267a.
67. Polyaniline/TiO2/MXene Ternary Composites for Enhancing Corrosion Resistance of Waterborne Epoxy Coatings / Н. An et al // ACS Applied Nano Materials. – 2024. – № 8. – Р. 340350. https://doi.org/10.1021/acsanm.4c05723.
68. Scalable Solution-Processed Fabrication Approach for High-Performance Silver Nanowire/MXene Hybrid Transparent Conductive Films / Р. Wang et al // Nanomaterials. – 2021. – № 11. – Р. 1360. https://doi.org/10.3390/nano11061360.
69. Study on Anticorrosion and Wear Resistance of Self-Healing Coating Based on Functional MXene and Dynamic Disulfide Bond / Х. Qiu et al // ACS Applied Polymer Materials. – 2024. – № 6. – Р. 11392-11405. https://doi.org/10.1021/acsapm.4c01983.
70. Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes / В. Akuzum et al // ACS Nano. – 2018. – № 12. – Р. 2685-2694. https://doi.org/10.1021/acsnano.7b08889.
71. Two-Dimensional Janus MXene Inks for Versatile Functional Coatings on Arbitrary Substrates / М. Chen et al // ACS Applied Materials & Interfaces. – 2023. – № 15. – Р. 4591-4600. https://doi.org/10.1021/acsami.2c20930.
72. Emergent 2D Materials for Combating Infectious Diseases: The Potential of MXenes and MXene–Graphene Composites to Fight against Pandemics / N. Dwivedi et al // Materials Advances. – 2021. – № 2. – Р. 2892-2905. https://doi.org/10.1039/d1ma00003a.
73. Recent Advances in MXenes Composites for Electromagnetic Interference Shielding and Microwave Absorption / Z. Wang et al // Composites Part A: Applied Science and Manufacturing. – 2020. – № 136. – Р. 105956. https://doi.org/10.1016/j.compositesa.2020.105956.
74. MXene-Based Membranes in Water Treatment: Current Status and Future Prospects / Y. Sun et al // Separation and Purification Technology. – 2024. – № 331. – Р. 125640. https://doi.org/10.1016/j.seppur.2023.125640.
75. Narayana S V V S. Biofilm Resistant Surfaces and Coatings on Implants: A Review / S V V S Narayana, S V V Srihari // Materials Today: Proceedings. – 2019. – № 18. – Р. 4847-4853. https://doi.org/10.1016/j.matpr.2019.07.475.
76. Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments / F. SousaCardoso et al // Nanomaterials. – 2023. – № 13. – Р. 381. https://doi.org/10.3390/nano13030381.
77. Antimicrobial Nanoparticles Mediated Prevention and Control of Membrane Biofouling in Water and Wastewater Treatment: Current Trends and Future Perspectives / S. Samal et al // Applied Biochemistry and Biotechnology. – 2023. – № 195. – Р. 5458-5477. https://doi.org/10.1007/s12010023-04497-8.
78. Learn G.D. Cyclodextrin Polymer Coatings Resist Protein Fouling, Mammalian Cell Adhesion, and Bacterial Attachment / G.D. Learn, E.J. Lai, H.A. von Recum // Cold Spring Harbor Laboratory. – 2020.
79. Nanocellulose-Intercalated MXene NF Membrane with Enhanced Swelling Resistance for Highly Efficient Antibiotics Separation / Н. Zhang et al // Separation and Purification Technology. – 2023. – № 305. – Р. 122425. https://doi.org/10.1016/j.seppur.2022.122425.
80. Enhancing Wear Resistance and Mechanical Property of Epoxy Coating via “Roller Wheel” Liquid metal‐MXene / S. Zheng et al // Journal of Applied Polymer Science. – 2024. – № 141. https://doi.org/10.1002/app.55511.
81. Unleashing the Potential of MXene‐Based Flexible Materials for High‐Performance Energy Storage Devices / Y. Zhou et al // Advanced Science. – 2023. – № 11. https://doi.org/10.1002/advs.202304874.
82. Patel P. Flexible MXene Coatings Stay Put on Any Surface / P. Patel // Chemical & Engineering News. – 2021. – № 7–7. https://doi.org/10.47287/cen-09932-scicon3.
83. Stretchable, Nano-Crumpled MXene Multilayers Impart Long-Term Antibacterial Surface Properties / N. Nagpal et al // Cold Spring Harbor Laboratory, 2023.
84. MXene-Functionalized Light-Induced Antimicrobial and Waterproof Polyacrylate Coating for Cementitious Materials Protection / Н. Zhang et al // Polymers. – 2023. – № 15. – Р. 2076. https://doi.org/10.3390/polym15092076.
85. MXene: A Wonderful Nanomaterial in Antibacterial / S. Ye et al // Frontiers in Bioengineering and Biotechnology. – 2024. – № 12. https://doi.org/10.3389/fbioe.2024.1338539.
86. Bio-Inspired Self-Healing MXene/Polyurethane Coating with Superior Active/Passive Anticorrosion Performance for Mg Alloy / X. Li et al // Chemical Engineering Journal. – 2023. – № 454. – Р. 140187. https://doi.org/10.1016/j.cej.2022.140187.
87. Strain Sensing Coatings for Large Composite Structures Based on 2D MXene Nanoparticles / G. Monastyreckis et al // Sensors. – 2021. – № 21. – Р. 2378. https://doi.org/10.3390/s21072378.
88. Surface-Agnostic Highly Stretchable and Bendable Conductive MXene Multilayers / Н. An et al // Science Advances. – 2018. – № 4. https://doi.org/10.1126/sciadv.aaq0118.
89. MXene Sensors Based on Optical and Electrical Sensing Signals: From Biological, Chemical, and Physical Sensing to Emerging Intelligent and Bionic Devices / L. Wu et al // PhotoniX. – 2023. – № 4. https://doi.org/10.1186/s43074-023-00091-7.
90. Flexible, Transparent, and Conductive Ti3C2Tx MXene–Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding / W. Chen et al // ACS Nano. – 2020. – № 14. – Р. 16643-16653. https://doi.org/10.1021/acsnano.0c01635.
91. MXene-Based Flexible Electronic Materials for Wound Infection Detection and Treatment / Y. Hu et al // npj Flexible Electronics. – 2024. – № 8. https://doi.org/10.1038/s41528-024-00312-4.
92. MXenes in Healthcare: Synthesis, Fundamentals and Applications / Z.U.D. Babar et al // Chemical Society Reviews. – № 54. – Р. 3387-3440. https://doi.org/10.1039/D3CS01024D.
93. Scalable Production of Catecholamine‐Densified MXene Coatings for Electromagnetic Shielding and Infrared Stealth / Z. Deng et al // Small. – 2023. – № 19. https://doi.org/10.1002/smll.202304278.
94. Evaluation of Perspectives for the Synthesis of Ti3AlC2 in Kazakhstan for Supercapacitor Application / А. Starodubtseva et al // Chemical Bulletin of Kazakh National University. – 2024. – Р. 4-12. https://doi.org/10.15328/cb1389.
95. Synthesis, Properties, and Applications of Nanocomposite Materials Based on Bacterial Cellulose and MXene / А.В. Talipova et al // Polymers. – 2023. – № 15. – Р. 4067. https://doi.org/10.3390/polym15204067.
96. Kөrkembai ZH. Ti3C2 (MXene) Katalizator Қatysynda Ammonii Perkhloraty Negіzіndegі Қatty Otynnyң Zhanu Үrdіs / ZH. Kөrkembai, A.N. Alipbaev, Z.A. Mansurov // BULLETIN of the L.N. Gumilyov Eurasian National University. Chemistry. Geography. Ecology Series. – 2024. – № 149. – Р. 67-78. https://doi.org/10.32523/2616-6771-2024-149-4-67-78. (In Kazakh).
Рецензия
Дәйектеу үшін:
Әліпұлы M., Нұрғалиев H.H., Асқарұлы К., Khalid M., Азат С. MXENE МАТЕРИАЛДАРЫ: ЗАМАНАУИ СИНТЕЗ ӘДІСТЕРІ, ЭКОЛОГИЯЛЫҚ ТАЗА ТӘСІЛДЕР ЖӘНЕ ЖАБЫНДАР МЕН КОМПОЗИТТІК МАТЕРИАЛДАР РЕТІНДЕ ҚОЛДАНУ МҮМКІНДІКТЕРІ. Шәкәрім Университетінің Хабаршысы. Техникалық ғылымдар сериясы. 2025;(2(18)):487-501. https://doi.org/10.53360/2788-7995-2025-2(18)-60
For citation:
Alipuly M., Nurgaliyev N.N., Askaruly K., Khalid M., Azat S. MXENE MATERIALS: MODERN SYNTHESIS METHODS, ECO-FRIENDLY APPROACHES, AND PROSPECTS FOR APPLICATION AS COATINGS AND COMPOSITE MATERIALS. Bulletin of Shakarim University. Technical Sciences. 2025;(2(18)):487-501. (In Russ.) https://doi.org/10.53360/2788-7995-2025-2(18)-60