Preview

Вестник Университета Шакарима. Серия технические науки

Расширенный поиск

МАТЕРИАЛЫ MXENE: СОВРЕМЕННЫЕ МЕТОДЫ СИНТЕЗА, ЭКОЛОГИЧЕСКИ ЧИСТЫЕ ПОДХОДЫ И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ В КАЧЕСТВЕ ПОКРЫТИЙ И КОМПОЗИТНЫХ МАТЕРИАЛОВ

https://doi.org/10.53360/2788-7995-2025-2(18)-60

Аннотация

Статья представляет обзор современных методов синтеза MXene – двумерных материалов, включающих карбиды, нитриды и карбонитриды переходных металлов, с акцентом на экологически безопасные подходы и их перспективы в качестве покрытий и композитов. Рассматриваются традиционные методы травления с использованием фторидов, таких как плавиковая кислота, и их недостатки, включая экологические риски. В противовес им описаны «зеленые» технологии, такие как электрохимическое травление и методы с расплавленными солями, которые минимизируют воздействие на окружающую среду и повышают масштабируемость производства. Особое внимание уделено уникальным свойствам MXene: высокой электропроводности, механической гибкости и гидрофильности, что делает их востребованными в энергетике, электронике и экологии. В статье подчеркивается их потенциал в антикоррозионных, антибактериальных покрытиях, защите от электромагнитных помех и сенсорных системах. Также обсуждаются возможности применения MXene в Казахстане, включая использование местного сырья для производства суперконденсаторов, биомедицинских материалов и катализаторов для аэрокосмической отрасли. Экономическая эффективность локального синтеза подчеркивает перспективы для развития высокотехнологичных отраслей. Работа направлена на освещение текущих достижений и вдохновение на дальнейшие исследования в области устойчивого материаловедения, демонстрируя, как MXene могут способствовать инновациям, сочетая функциональность с экологической ответственностью.

Об авторах

М. Әліпұлы
Satbayev Univeristy
Казахстан

Мұхтар Әліпұлы – докторант кафедры «Материаловедение, нанотехнологии и инженерная физика»,

050013, Республика Казахстан, г. Алматы, ул. Сатпаева, 22



Н. Н. Нұрғалиев
Шәкәрім университет
Казахстан

Нұржан Нұрлыбекұлы Нұрғалиев – PhD, ассоциированный профессор,

071410, Республика Казахстан, г. Семей, ул. Глинки, 20 А



К. Асқарұлы
Satbayev Univeristy
Казахстан

Қыдыр Асқарұлы – доктор технических наук, Ассоциированный профессор кафедры «Общая физика»,

050013, Республика Казахстан, г. Алматы, ул. Сатпаева, 22



M. Khalid
Университет Глазго
Великобритания

Mohammad Khalid – доктор инженерии, Профессор,

G12 8QQ, Великобритания, Глазго, пр. Университет



С. Азат
Satbayev Univeristy
Казахстан

Сейтхан Азат – Профессор, заведующий Лаборатории Инженерного Профиля, 

050013, Республика Казахстан, г. Алматы, ул. Сатпаева, 22



Список литературы

1. Anasori B. Introduction to 2D Transition Metal Carbides and Nitrides (Mxenes) / B. Anasori, Y. Gogotsi // In 2D Metal Carbides and Nitrides (MXenes); Springer International Publishing: Cham. – 2019. – Р. 3-12.

2. Chia X. Characteristics and Performance of Two-Dimensional Materials for Electrocatalysis / X. Chia, M. Pumera // Nature Catalysis. – 2018. – № 1. – Р. 909-921. https://doi.org/10.1038/s41929018-0181-7.

3. Ali I. MXenes Thin Films: From Fabrication to Their Applications / I. Ali, M. Faraz Ud Din, Z.-G. Gu // Molecules. – 2022. – № 27. – Р. 4925. https://doi.org/10.3390/molecules27154925.

4. Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene / K. Hantanasirisakul et al // Chemistry of Materials. – 2019. – № 31. – Р. 2941-2951. https://doi.org/10.1021/acs.chemmater.9b00401.

5. MXene and Polymer Collision: Sparking the Future of High‐Performance Multifunctional Coatings / Х. He et al // Advanced Functional Materials. – 2024. – № 34. – https://doi.org/10.1002/adfm.202409675.

6. BTA-P4444-Lig-Functionalized MXene to Prepare Anticorrosion and Wear-Resistant Integrated Waterborne Epoxy Composite Coating / S. Liu et al // ACS Sustainable Chemistry & Engineering. – 2024. – № 12. – Р. 8247-8260. https://doi.org/10.1021/acssuschemeng.4c02002.

7. A Green and Fluorine‐Free Fabrication of 3D Self‐Supporting MXene by Combining Anodic Electrochemical In Situ Etching with Cathodic Electrophoretic Deposition for Electrocatalytic Hydrogen Evolution / M. Sheng et al // Advanced Materials Technologies. – 2023. – № 9. https://doi.org/10.1002/admt.202301694.

8. Towards Greener and More Sustainable Synthesis of MXenes: A Review / Т. Amrillah et al // Nanomaterials. – 2022. – № 12. – Р. 4280. https://doi.org/10.3390/nano12234280.

9. Kumar S. Fluorine‐Free MXenes: Recent Advances, Synthesis Strategies, and Mechanisms / S. Kumar // Small. – 2023. – № 20. https://doi.org/10.1002/smll.202308225.

10. Recent Advanced Developments and Prospects of Surface Functionalized MXenes-Based Hybrid Composites toward Electrochemical Water Splitting Applications / R. Kulkarni et al // ACS Materials Letters. – 2024. – № 6. – Р. 2660-2686. https://doi.org/10.1021/acsmaterialslett.4c00034.

11. MXenes as Emerging Materials: Synthesis, Properties, and Applications / U.U. Rahman et al // Molecules. – 2022. – № 27. – Р. 4909. https://doi.org/10.3390/molecules27154909.

12. Atomic Scale Design of MXenes and Their Parent Materials-From Theoretical and Experimental Perspectives / J. Zhou et al // Chemical Reviews. – 2023. – № 123. – Р. 13291-13322. https://doi.org/10.1021/acs.chemrev.3c00241.

13. MXene: A Roadmap to Sustainable Energy Management, Synthesis Routes, Stabilization, and Economic Assessment / М. Mim et al // ACS Omega. – 2024. https://doi.org/10.1021/acsomega.4c04849.

14. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 / М. Naguib et al // Advanced Materials. – 2011. – № 23. – Р. 4248-4253. https://doi.org/10.1002/adma.201102306.

15. Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis / С.Е. Shuck et al // ACS Chemical Health & Safety. – 2021. – № 28. – Р. 326-338. https://doi.org/10.1021/acs.chas.1c00051.

16. High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis / М. Seredych et al // Chemistry of Materials. – 2019. – № 31. – Р. 3324-3332. https://doi.org/10.1021/acs.chemmater.9b00397.

17. Biswas S. MXene: Evolutions in Chemical Synthesis and Recent Advances in Applications / S. Biswas, P.S. Alegaonkar // Surfaces. – 2021. – № 5. – Р. 1-34. https://doi.org/10.3390/surfaces5010001.

18. Naguib M. Ten Years of Progress in the Synthesis and Development of MXenes / M. Naguib, M.W. Barsoum, Y. Gogotsi // Advanced Materials. – 2021. – № 33. https://doi.org/10.1002/adma.202103393.

19. Delamination of Ti3C2Tx Nanosheets with NaCl and KCl for Improved Environmental Stability of MXene Films / М. Shekhirev et al // ACS Applied Nano Materials. – 2022. – № 5. – Р. 16027-16032. https://doi.org/10.1021/acsanm.2c03701.

20. Ultrafast Synthesis of MXenes in Minutes via Low‐Temperature Molten Salt Etching / Y. Wang et al // Advanced Materials. – 2024. – № 36. https://doi.org/10.1002/adma.202410736.

21. Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis / Y.-J. Kim et al // Chemistry of Materials. – 2021. – № 33. – Р. 6346-6355. https://doi.org/10.1021/acs.chemmater.1c01263.

22. Eutectic Etching toward In‐Plane Porosity Manipulation of Cl‐Terminated MXene for High-Performance Dual‐Ion Battery Anode / M. Zhang et al // Advanced Energy Materials. – 2021. – № 12. https://doi.org/10.1002/aenm.202102493.

23. Huang P. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes / P. Huang, W.-Q. Han // Nano-Micro Letters. – 2023. – № 15. https://doi.org/10.1007/s40820-023-01039-z.

24. Kruger D.D. Molten Salt Derived MXenes: Synthesis and Applications / D.D. Kruger, H. García, A. Primo // Advanced Science. – 2024. https://doi.org/10.1002/advs.202307106.

25. The Fabrication of Ti3C2 and Ti3CN MXenes by Electrochemical Etching / K.C. Chan et al // Journal of Materials Chemistry A12. – Р. 25165-25175. https://doi.org/10.1039/D4TA03457K.

26. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes / М. Li et al // Journal of the American Chemical Society. – 2019. – № 141. – Р. 4730-4737. https://doi.org/10.1021/jacs.9b00574.

27. Qureshi N. Expediting High‐Yield Mxene Carbides and Nitrides Synthesis for Next‐Generation 2D Materials / N. Qureshi, С. Choi, J. Doh // Advanced Materials Technologies. – 2023. – № 9. https://doi.org/10.1002/admt.202301611.

28. Green Synthesis and Biosafety Assessment of MXene / S. Zhang et al // Small. – 2023. – № 20. https://doi.org/10.1002/smll.202308600.

29. Interface Chemistry on MXene‐Based Materials for Enhanced Energy Storage and Conversion Performance / Х. Hui et al // Advanced Functional Materials. – 2020. – № 30. https://doi.org/10.1002/adfm.202005190.

30. Pulsed Electrochemical Exfoliation for an HF‐Free Sustainable MXene Synthesis / М. Ostermann et al // Small. – 2025. https://doi.org/10.1002/smll.202500807.

31. Universal Strategy for HF-Free Facile and Rapid Synthesis of Two-Dimensional MXenes as Multifunctional Energy Materials / S.-Y. Pang et al // Journal of the American Chemical Society. – 2019. – № 141. – Р. 9610-9616. https://doi.org/10.1021/jacs.9b02578.

32. Huang,X. A Facile, High‐Yield, and Freeze‐and‐Thaw‐Assisted Approach to Fabricate MXene with Plentiful Wrinkles and Its Application in On‐Chip Micro‐Supercapacitors / X. Huang, P. Wu // Advanced Functional Materials. – 2020. https://doi.org/10.1002/adfm.201910048.

33. Scalable Synthesis of Ti3C2Tx–Arginine and Serine-Functionalized Carbon Quantum Dot Microspheres for High Performance Supercapacitors / N. Wang et al // New Journal of Chemistry. – 2023. – № 47. – Р. 1993-2002. https://doi.org/10.1039/d2nj05580e.

34. Adibah N.A. Synthesis of Ti3C2 Mxene through In Situ HF and Direct HF Etching Procedures as Electrolyte Fillers in Dye-Sensitized Solar Cell / N.A. Adibah, S.N.A. Zaine, M.F.A. Shukur // Materials Science Forum. – 2021. – № 1023. – Р. 15-20. https://doi.org/10.4028/www.scientific.net/msf.1023.15.

35. Energy-Efficient Synthesis of Ti3C2Tx MXene for Electromagnetic Shielding / Н. Renuka et al // Materials Science in Semiconductor Processing. – 2025. – № 185. – Р. 108966. https://doi.org/10.1016/j.mssp.2024.108966.

36. Synthesis of a 2D Tungsten MXene for Electrocatalysis / А. Thakur et al // Nature Synthesis. – 2025. https://doi.org/10.1038/s44160-025-00773-z.

37. Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective / Y. Long et al // Advanced Science. – 2022. – № 9. https://doi.org/10.1002/advs.202200296.

38. MXenes for Sustainable Energy: A Comprehensive Review on Conservation and Storage Applications / М. Jussambayev et al // Carbon Trends. – 2025. – № 19. – Р. 100471. https://doi.org/10.1016/j.cartre.2025.100471.

39. Flexible MXene Films for Batteries and Beyond / Y. Huang et al // Carbon Energy. – 2022. – № 4. – Р. 598-620. https://doi.org/10.1002/cey2.200.

40. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band / М. Han et al // ACS Applied Materials & Interfaces. – 2016. – № 8. – Р. 21011-21019. https://doi.org/10.1021/acsami.6b06455.

41. Enhanced Oxidation‐Resistant and Conductivity in MXene Films with Seamless Heterostructure / W. Qian et al // Small. – 2024. – № 20. https://doi.org/10.1002/smll.202403149.

42. Young’s Modulus and Tensile Strength of Ti3C2 MXene Nanosheets As Revealed by In Situ TEM Probing, AFM Nanomechanical Mapping, and Theoretical Calculations / K.L. Firestein et al // Nano Letters. – 2020. – № 20. – Р. 5900-5908. https://doi.org/10.1021/acs.nanolett.0c01861.

43. Elastic Properties of 2D Ti3C2TX MXene Monolayers and Bilayers / А. Lipatov et al // Science Advances. – 2018. – № 4. https://doi.org/10.1126/sciadv.aat0491.

44. Ding M. Ti3C2TX MXene@rGo Composite Self-Supporting Membrane and Its Welding Process / M. Ding, X. Zhang, W. Zhang // Journal of Physics: Conference Series. – 2023. – № 2566. – Р. 012116. https://doi.org/10.1088/1742-6596/2566/1/012116.

45. Synergistical Thermal Modulation Function of 2D Ti3C2 MXene Composite Nanosheets via Interfacial Structure Modification / Y. Ouyang et al // iScience. – 2022. – № 25. – Р. 104825. https://doi.org/10.1016/j.isci.2022.104825.

46. Li L. MXene Based Nanocomposite Films / L. Li, Q. Cheng // Exploration. – 2022. – № 2. https://doi.org/10.1002/exp.20220049.

47. Two-Dimensional MXenes for Electrochemical Energy Storage Applications / Р.А. Shinde et al // Journal of Materials Chemistry A. – 2022. – № 10. – Р. 1105-1149. https://doi.org/10.1039/d1ta04642j.

48. Björk J. Functionalizing MXenes by Tailoring Surface Terminations in Different Chemical

49. Environments / J. Björk, J. Rosen // Chemistry of Materials. – 2021. – № 33. – Р. 9108-9118. https://doi.org/10.1021/acs.chemmater.1c01264.

50. Ihsanullah I. Potential of MXenes in Water Desalination: Current Status and Perspectives / I. Ihsanullah // Nano-Micro Letters. – 2020. – № 12. https://doi.org/10.1007/s40820-020-0411-9.

51. Methods of Synthesis, Characteristics, and Environmental Applications of MXene: A Comprehensive Review / J.A. Kumar et al // Chemosphere. – 2022. – № 286. – Р. 131607. https://doi.org/10.1016/j.chemosphere.2021.131607.

52. 2 D MXene‐based Energy Storage Materials: Interfacial Structure Design and Functionalization / R. Fang et al // ChemSusChem. – 2019. – № 13. – Р. 1409-1419. https://doi.org/10.1002/cssc.201902537.

53. Surface Terminations of MXene: Synthesis, Characterization, and Properties / М. Tang et al // Symmetry. – 2022. – № 14. – Р. 2232. https://doi.org/10.3390/sym14112232.

54. MXenes: A Promising Material with Multifunctional Applications / D. Dhamodharan et al // Journal of Environmental Chemical Engineering. – 2024. – № 12. – Р. 112316. https://doi.org/10.1016/j.jece.2024.112316.

55. Double Transition Metal MXenes for Enhanced Electrochemical Applications: Challenges and Opportunities / F. Bibi et al // EcoMat. – 2024. – № 6. https://doi.org/10.1002/eom2.12485.

56. Ion-Selective Separation Using MXene-Based Membranes: A Review / S. Hong et al // ACS Materials Letters. – 2023. – № 5. – Р. 341-356. https://doi.org/10.1021/acsmaterialslett.2c00914.

57. Architectural Design and Affecting Factors of MXene-Based Textronics for Real-World Application / Md.R. Repon et al // RSC Advances. – 2024. – № 14. – Р. 16093-16116. https://doi.org/10.1039/d4ra01820f.

58. MXene Coatings: Novel Hydrogen Permeation Barriers for Pipe Steels / K. Shi et al // Nanomaterials. – 2021. – № 11. – Р. 2737. https://doi.org/10.3390/nano11102737.

59. Flexible, Ultralight, and Mechanically Robust Waterborne Polyurethane/Ti3C2Tx MXene/Nickel Ferrite Hybrid Aerogels for High-Performance Electromagnetic Interference Shielding / Y. Wang et al // ACS Applied Materials & Interfaces. – 2021. – № 13. – Р. 21831-21843. https://doi.org/10.1021/acsami.1c04962.

60. Enhancement on the Thermal and Tribological Behaviors of Polyurethane/Epoxy-Based Interpenetrating Network Composites by Orientationally Aligned CNF/MXene/WPU Aerogels / Y. He et al // Composites Part A: Applied Science and Manufacturing. – 2024. – № 187. – Р. 108477. https://doi.org/10.1016/j.compositesa.2024.108477.

61. Recent Advances in MXene/Epoxy Composites: Trends and Prospects / R. Giménez et al // Polymers. – 2022. – № 14. – Р. 1170. https://doi.org/10.3390/polym14061170.

62. Toughening and Polymerization Stress Control in Composites Using Thiourethane-Treated Fillers / А.Р.Р. Fugolin et al // Scientific Reports. – 2021. – № 11. https://doi.org/10.1038/s41598021-87151-9.

63. Recent Advances of MXene-Based Nanocomposites towards Microwave Absorption: A Review / S. Liu et al // Advanced Composites and Hybrid Materials. – 2025. – № 8. https://doi.org/10.1007/s42114-024-01145-5.

64. Anomalous Absorption of Electromagnetic Waves by 2D Transition Metal Carbonitride Ti3CNTX (MXene) / А. Iqbal et al // Science. – 2020. – № 369. – Р. 446-450. https://doi.org/10.1126/science.aba7977.

65. Electromagnetic Interference Shielding Materials: Recent Progress, Structure Design, and Future Perspective / X.-Y. Wang et al // Journal of Materials Chemistry. – 2022. – № 10. – Р. 44-72. https://doi.org/10.1039/d1tc04702g.

66. Pieters K. Progress in Waterborne Polymer Dispersions for Coating Applications: Commercialized Systems and New Trends / K. Pieters, T.H. Mekonnen // RSC Sustainability. – 2024. – № 2. – Р. 3704-3729. https://doi.org/10.1039/d4su00267a.

67. Polyaniline/TiO2/MXene Ternary Composites for Enhancing Corrosion Resistance of Waterborne Epoxy Coatings / Н. An et al // ACS Applied Nano Materials. – 2024. – № 8. – Р. 340350. https://doi.org/10.1021/acsanm.4c05723.

68. Scalable Solution-Processed Fabrication Approach for High-Performance Silver Nanowire/MXene Hybrid Transparent Conductive Films / Р. Wang et al // Nanomaterials. – 2021. – № 11. – Р. 1360. https://doi.org/10.3390/nano11061360.

69. Study on Anticorrosion and Wear Resistance of Self-Healing Coating Based on Functional MXene and Dynamic Disulfide Bond / Х. Qiu et al // ACS Applied Polymer Materials. – 2024. – № 6. – Р. 11392-11405. https://doi.org/10.1021/acsapm.4c01983.

70. Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes / В. Akuzum et al // ACS Nano. – 2018. – № 12. – Р. 2685-2694. https://doi.org/10.1021/acsnano.7b08889.

71. Two-Dimensional Janus MXene Inks for Versatile Functional Coatings on Arbitrary Substrates / М. Chen et al // ACS Applied Materials & Interfaces. – 2023. – № 15. – Р. 4591-4600. https://doi.org/10.1021/acsami.2c20930.

72. Emergent 2D Materials for Combating Infectious Diseases: The Potential of MXenes and MXene–Graphene Composites to Fight against Pandemics / N. Dwivedi et al // Materials Advances. – 2021. – № 2. – Р. 2892-2905. https://doi.org/10.1039/d1ma00003a.

73. Recent Advances in MXenes Composites for Electromagnetic Interference Shielding and Microwave Absorption / Z. Wang et al // Composites Part A: Applied Science and Manufacturing. – 2020. – № 136. – Р. 105956. https://doi.org/10.1016/j.compositesa.2020.105956.

74. MXene-Based Membranes in Water Treatment: Current Status and Future Prospects / Y. Sun et al // Separation and Purification Technology. – 2024. – № 331. – Р. 125640. https://doi.org/10.1016/j.seppur.2023.125640.

75. Narayana S V V S. Biofilm Resistant Surfaces and Coatings on Implants: A Review / S V V S Narayana, S V V Srihari // Materials Today: Proceedings. – 2019. – № 18. – Р. 4847-4853. https://doi.org/10.1016/j.matpr.2019.07.475.

76. Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments / F. SousaCardoso et al // Nanomaterials. – 2023. – № 13. – Р. 381. https://doi.org/10.3390/nano13030381.

77. Antimicrobial Nanoparticles Mediated Prevention and Control of Membrane Biofouling in Water and Wastewater Treatment: Current Trends and Future Perspectives / S. Samal et al // Applied Biochemistry and Biotechnology. – 2023. – № 195. – Р. 5458-5477. https://doi.org/10.1007/s12010023-04497-8.

78. Learn G.D. Cyclodextrin Polymer Coatings Resist Protein Fouling, Mammalian Cell Adhesion, and Bacterial Attachment / G.D. Learn, E.J. Lai, H.A. von Recum // Cold Spring Harbor Laboratory. – 2020.

79. Nanocellulose-Intercalated MXene NF Membrane with Enhanced Swelling Resistance for Highly Efficient Antibiotics Separation / Н. Zhang et al // Separation and Purification Technology. – 2023. – № 305. – Р. 122425. https://doi.org/10.1016/j.seppur.2022.122425.

80. Enhancing Wear Resistance and Mechanical Property of Epoxy Coating via “Roller Wheel” Liquid metal‐MXene / S. Zheng et al // Journal of Applied Polymer Science. – 2024. – № 141. https://doi.org/10.1002/app.55511.

81. Unleashing the Potential of MXene‐Based Flexible Materials for High‐Performance Energy Storage Devices / Y. Zhou et al // Advanced Science. – 2023. – № 11. https://doi.org/10.1002/advs.202304874.

82. Patel P. Flexible MXene Coatings Stay Put on Any Surface / P. Patel // Chemical & Engineering News. – 2021. – № 7–7. https://doi.org/10.47287/cen-09932-scicon3.

83. Stretchable, Nano-Crumpled MXene Multilayers Impart Long-Term Antibacterial Surface Properties / N. Nagpal et al // Cold Spring Harbor Laboratory, 2023.

84. MXene-Functionalized Light-Induced Antimicrobial and Waterproof Polyacrylate Coating for Cementitious Materials Protection / Н. Zhang et al // Polymers. – 2023. – № 15. – Р. 2076. https://doi.org/10.3390/polym15092076.

85. MXene: A Wonderful Nanomaterial in Antibacterial / S. Ye et al // Frontiers in Bioengineering and Biotechnology. – 2024. – № 12. https://doi.org/10.3389/fbioe.2024.1338539.

86. Bio-Inspired Self-Healing MXene/Polyurethane Coating with Superior Active/Passive Anticorrosion Performance for Mg Alloy / X. Li et al // Chemical Engineering Journal. – 2023. – № 454. – Р. 140187. https://doi.org/10.1016/j.cej.2022.140187.

87. Strain Sensing Coatings for Large Composite Structures Based on 2D MXene Nanoparticles / G. Monastyreckis et al // Sensors. – 2021. – № 21. – Р. 2378. https://doi.org/10.3390/s21072378.

88. Surface-Agnostic Highly Stretchable and Bendable Conductive MXene Multilayers / Н. An et al // Science Advances. – 2018. – № 4. https://doi.org/10.1126/sciadv.aaq0118.

89. MXene Sensors Based on Optical and Electrical Sensing Signals: From Biological, Chemical, and Physical Sensing to Emerging Intelligent and Bionic Devices / L. Wu et al // PhotoniX. – 2023. – № 4. https://doi.org/10.1186/s43074-023-00091-7.

90. Flexible, Transparent, and Conductive Ti3C2Tx MXene–Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding / W. Chen et al // ACS Nano. – 2020. – № 14. – Р. 16643-16653. https://doi.org/10.1021/acsnano.0c01635.

91. MXene-Based Flexible Electronic Materials for Wound Infection Detection and Treatment / Y. Hu et al // npj Flexible Electronics. – 2024. – № 8. https://doi.org/10.1038/s41528-024-00312-4.

92. MXenes in Healthcare: Synthesis, Fundamentals and Applications / Z.U.D. Babar et al // Chemical Society Reviews. – № 54. – Р. 3387-3440. https://doi.org/10.1039/D3CS01024D.

93. Scalable Production of Catecholamine‐Densified MXene Coatings for Electromagnetic Shielding and Infrared Stealth / Z. Deng et al // Small. – 2023. – № 19. https://doi.org/10.1002/smll.202304278.

94. Evaluation of Perspectives for the Synthesis of Ti3AlC2 in Kazakhstan for Supercapacitor Application / А. Starodubtseva et al // Chemical Bulletin of Kazakh National University. – 2024. – Р. 4-12. https://doi.org/10.15328/cb1389.

95. Synthesis, Properties, and Applications of Nanocomposite Materials Based on Bacterial Cellulose and MXene / А.В. Talipova et al // Polymers. – 2023. – № 15. – Р. 4067. https://doi.org/10.3390/polym15204067.

96. Kөrkembai ZH. Ti3C2 (MXene) Katalizator Қatysynda Ammonii Perkhloraty Negіzіndegі Қatty Otynnyң Zhanu Үrdіs / ZH. Kөrkembai, A.N. Alipbaev, Z.A. Mansurov // BULLETIN of the L.N. Gumilyov Eurasian National University. Chemistry. Geography. Ecology Series. – 2024. – № 149. – Р. 67-78. https://doi.org/10.32523/2616-6771-2024-149-4-67-78. (In Kazakh).


Рецензия

Для цитирования:


Әліпұлы М., Нұрғалиев Н.Н., Асқарұлы К., Khalid M., Азат С. МАТЕРИАЛЫ MXENE: СОВРЕМЕННЫЕ МЕТОДЫ СИНТЕЗА, ЭКОЛОГИЧЕСКИ ЧИСТЫЕ ПОДХОДЫ И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ В КАЧЕСТВЕ ПОКРЫТИЙ И КОМПОЗИТНЫХ МАТЕРИАЛОВ. Вестник Университета Шакарима. Серия технические науки. 2025;(2(18)):487-501. https://doi.org/10.53360/2788-7995-2025-2(18)-60

For citation:


Alipuly M., Nurgaliyev N.N., Askaruly K., Khalid M., Azat S. MXENE MATERIALS: MODERN SYNTHESIS METHODS, ECO-FRIENDLY APPROACHES, AND PROSPECTS FOR APPLICATION AS COATINGS AND COMPOSITE MATERIALS. Bulletin of Shakarim University. Technical Sciences. 2025;(2(18)):487-501. (In Russ.) https://doi.org/10.53360/2788-7995-2025-2(18)-60

Просмотров: 99


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X