Modern Approaches to Metal Recovery: Acid Leaching and Bioleaching Technologies
https://doi.org/10.53360/2788-7995-2025-2(18)-65
Abstract
With each passing year, the volume of metallurgical waste continues to grow, posing serious environmental and economic challenges. However, metallurgical by-products such as slags and tailings contain numerous valuable metals that can be recovered and reintegrated into production cycles. In this context, hydrometallurgical and bioleaching technologies are gaining particular relevance. These methods enable the efficient extraction of valuable components from waste while simultaneously reducing its volume and minimizing the environmental burden. This article examines how modern techniques, such as acid leaching and bioleaching, can be utilized not only to recover metals but also to address waste disposal issues with minimal ecological impact. Special attention is given to practical examples and research developments that demonstrate the high efficiency and industrial applicability of these technologies. This study highlights the importance of waste recycling not only from an ecological perspective but also as a critical step toward building a more sustainable economy where every resource is used to its fullest potential.
About the Authors
A. A. UalikhanovKazakhstan
Asylan Ualikhanov – PhD student at the Department of «Chemistry and Ecology,
071412, Semey, 20 A Glinka Street
A. Sabitova
Kazakhstan
Alfira Sabitova – Shakarim University, PhD, head of the department «Chemistry and ecology»,
071412, Semey, 20 A Glinka Street
A. Klivenko
Kazakhstan
Alexey Nikolaevich Klivenko – Head of the Scientific Center for Radioecological Research,
071412, Semey, 20 A Glinka Street
B. Rakhadilov
Kazakhstan
Bauyrzhan Rakhadilov – Associate Professor at the Department of Physics, PhD in «Technical Physics»,
071412, Semey, 20 A Glinka Street
N. Mukhamediyarov
Kazakhstan
Nurlan Mukhamediarov – PhD student at the Department of «Chemistry and Ecology»,
071412, Semey, 20 A Glinka Street
References
1. Ray A.R. Hydrometallurgical technique as a better option for the recovery of rare earths from mine tailings and industrial wastes / A.R. Ray, S. Mishra // Sustainable Chemistry and Pharmacy. – 2023. – Vol. 36. – P. 101311. https://doi.org/10.1016/j.scp.2023.101311.
2. Recovery of metal values from copper slag and reuse of residual secondary slag / Р. Sarfo et al // Waste Management. – 2017. https://doi.org/10.1016/j.wasman.2017.09.024.
3. Roy S. Flotation of copper sulphide from copper smelter slag using multiple collectors and their mixtures / S. Roy, S. Rehani // International Journal of Mineral Processing. – 2015. https://doi.org/10.1016/j.minpro.2015.08.008.
4. Selective leaching of base metals from copper smelter slag / Z. Yang et al // Hydrometallurgy. – 2010. – Vol. 103. – P. 25-29. https://doi.org/10.1016/j.hydromet.2010.02.009.
5. Effect of Nano-SiO₂ on the Early Hydration of Alite-Sulphoaluminate Cement / J. Sun et al // Nanomaterials. – 2017. – Vol. 7. – P. 102. https://doi.org/10.3390/nano7050102.
6. Biorecovery of copper from converter slags: Slags characterization and exploratory ferric leaching tests / F. Carranza et al // Hydrometallurgy. – 2009. – Vol. 97. – P. 39-45. https://doi.org/10.1016/j.hydromet.2008.12.012.
7. Chen M. Recovery of valuable metals from copper slag by hydrometallurgy / M. Chen, Z. Han, L. Wang // Advanced Materials Research. – 2012. – Vol. 402. – P. 35-40. https://doi.org/10.4028/www.scientific.net/AMR.402.35.
8. Altundogan H.S. A study on the sulphuric acid leaching of copper converter slag in the presence of dichromate / H.S. Altundogan, M. Boyrazli, F. Tumen // Minerals Engineering. – 2004. – Vol. 17. – P. 465-467. https://doi.org/10.1016/j.mineng.2003.11.002.
9. Ahmed I.M. Leaching and recovery of zinc and copper from brass slag by sulfuric acid / I.M. Ahmed, A.A. Nayl, J.A. Daoud // Journal of Saudi Chemical Society. – 2016. – Vol. 20. – P. S280– S285. https://doi.org/10.1016/j.jscs.2012.11.003.
10. Comprehensive review on metallurgical recycling and cleaning of copper slag / Н. Tian et al // Resources, Conservation & Recycling. – 2021. – Vol. 168. – P. 105366. https://doi.org/10.1016/j.resconrec.2020.105366.
11. Parpiev O. Prospects of extracting metals from technogenic wastes using concentrated solar radiation / O. Parpiev, M.-S.S. Payzullakhanov, R. Akbarov // Metallurgist. – 2022. https://doi.org/10.1007/s11015-022-01349-4.
12. Technologies for processing mining and metallurgical waste / S.B. Mirzajonova et al. – Tashkent: Tashkent State Technical University, 2023.
13. Jursová S. Metallurgical waste and possibilities of its processing / S. Jursová. – Ostrava: VŠB – Technical University of Ostrava, 2010.
14. Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO₂ from non-ferrous metal smelting flue gas / W. Liu et al // Fuel. – 2019. – Vol. 235. – P. 847-854. https://doi.org/10.1016/j.fuel.2018.08.062.
15. Advances in the use of recycled non-ferrous slag as a resource for non-ferrous metal mine site remediation / J. Ban et al // Environmental Research. – 2022. – Vol. 213. – P. 113533. https://doi.org/10.1016/j.envres.2022.113533.
16. Wai C.M. Supercritical fluid extraction: Metals as complexes / C.M. Wai, S. Wang // Journal of Chromatography A. – 1997. – Vol. 785. – P. 369-383. https://doi.org/10.1016/S0021-9673(97)00679-1.
17. Modeling and development of technology for smelting a complex alloy (ligature) Fe-Si-Mn-Al from manganese-containing briquettes and high-ash coals / A. Nurumgaliyev et al // Scientific Reports. – 2024. – Vol. 14. – P. 7456. https://doi.org/10.1038/s41598-024-57529-6.
18. Adsorption of rare earth elements (Ce³⁺, La³⁺, and Nd³⁺) and recovery from phosphogypsum leachate using a novel ZSM-5 zeolite / G.L. Dotto et al // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2024. – Vol. 698. – P. 134549. https://doi.org/10.1016/j.colsurfa.2024.134549.
19. Suzuki I. Microbial leaching of metals from sulfide minerals / I. Suzuki // Biotechnology Advances. – 2001. – Vol. 19(2). – P. 119-132. https://doi.org/10.1016/s0734-9750(01)00053-2.
20. Leaching of rare earth elements from phosphogypsum / S F. Lütke et al // Chemosphere. – 2022. – Vol. 301. – P. 134661. https://doi.org/10.1016/j.chemosphere.2022.134661.
Review
For citations:
Ualikhanov A.A., Sabitova A., Klivenko A., Rakhadilov B., Mukhamediyarov N. Modern Approaches to Metal Recovery: Acid Leaching and Bioleaching Technologies. Bulletin of Shakarim University. Technical Sciences. 2025;(2(18)):554-561. https://doi.org/10.53360/2788-7995-2025-2(18)-65