Preview

Bulletin of Shakarim University. Technical Sciences

Advanced search

COMPOSITION OF MICROFLORA OF LENGER BROWN COAL WASTE

https://doi.org/10.53360/2788-7995-2025-2(18)-20

Abstract

This article presents a genetic analysis of the species identification of the natural microflora composition of brown coal waste from the Lenger deposit in the Turkestan region and a PCR analysis of pure microorganism strains. Understanding the ecological significance of microorganisms in brown coal waste allows us to assess their impact on the environment, agriculture and energy production processes. It has been established that the microflora of brown coal waste includes cellulose-destroying and heterotrophic bacteria, micromycetes and actinomycetes. The main species composition was represented by micromycetes from the genera Mucorales, Aspergillus, Fusarium, Candida, and bacteria from the genera Bacillus, Rodococcus, Pseudomonas, as well as nitrogen-fixing bacteria. As a result of molecular genetic analysis to identify bacterial strains using the Sanger sequencing method, the following were identified: LB.1 strain – Priestia megaterium, LA.8 strain – Pseudomonas sp., LB.M2 strain – Aspergillus sydowii. This research allows to deeply understand the role of beneficial microorganisms in industrial wastes of brown coal in ecological processes, their significance in nature and in production. The obtained research results help to determine the way of effective use of microorganisms in brown coal waste to increase soil fertility or use for biotechnological purposes.

About the Authors

A. Alikhan
M. Auezov South Kazakhstan University
Kazakhstan

Akmaral Alikhan – 3rd year doctoral student of the Department of Biotechnology,

160000, Shymkent, Tauke Khan 5



A. Issayeva
M. Auezov South Kazakhstan University; Shymkent University
Kazakhstan

Akmaral Issayeva – professor of the Department of Biotechnology, 160000, Shymkent, Tauke Khan 5;

professor, Doctor of Biological Sciences, Director of the Research Institute of Biology and Ecology, Vice-Rector for Research, 160012 Shymkent, Karatau district, block 225, building 426

 



D. Kudasova
M. Auezov South Kazakhstan University
Kazakhstan

Darikha Kudasova – lecturer of the Department of Biotechnology, 

160000, Shymkent, Tauke Khan 5



Zh. Rakhymberdieva
M. Auezov South Kazakhstan University; Shymkent University
Kazakhstan

Zhanar Rakhymberdieva – PhD, Associate Professor, Department of Biology and Geography, 160000, Shymkent, Tauke Khan 5;

Director of the Research Institute of Pedagogy and Psychology, 160012 Shymkent, Karatau district, block 225, building 426



Zh. Rysbaeva
M. Auezov South Kazakhstan University
Kazakhstan

Zhanar Rysbaeva – 2 year doctoral student of the Department of Biotechnology, 

160000, Shymkent, Tauke Khan 5



References

1. Exploring the Potential of Microbial Coalbed Methane for Sustainable Energy Development / Y. Niu et al // Molecules. – 2024. – T. 29, № 15. – S. 3494. https://doi.org/10.3390/molecules29153494. (In English).

2. Biotechnological potentials of surfactants in coal utilization: a review / N. Akimbekov et al // Environmental Science and Pollution Research. – 2024. – R. 1-20. (In English).

3. Optimization of extrinsic parameters for beneficiation of coal with the help of Cronobacter sp / S. Rai et al // International Journal of Coal Preparation and Utilization. – 2024. – T. 44, № 10. – R. 1606-1621. (In English).

4. H2 production from coal by enriching sugar fermentation and alkane oxidation with hyperthermophilic resistance microbes in municipal wastewater / H. Zhang et al // Chemical Engineering Journal. – 2024. – T. 489. – R. 151487. https://doi.org/10.1016/j.cej.2024.151487. (In English).

5. Symanowicz B. Brown coal waste in agriculture and environmental protection: A review / B. Symanowicz, R. Toczko // Sustainability. – 2023. – T. 15, № 18. – R. 13371. https://doi.org/10.3390/su151813371. (In English).

6. Borrow pit disposal of coal mining byproducts improves soil physicochemical properties and vegetation succession / J. Bakr et al // Agronomy. – 2024. – T. 14, № 8. – R. 1638. (In English).

7. Coal biotransformations under aerobic conditions: Screening and characterization of potential biocatalysts / A.N. Khan et al // International Journal of Coal Preparation and Utilization. – 2024. – T. 44, № 9. – R. 1266-1286. https://doi.org/10.1080/19392699.2023.2270929. (In English).

8. Study of the Possibility of Biorecultivation of Soils Contaminated with Brown Coal Waste / I. Akmaral et al // Journal of Ecological Engineering. – 2024. – T. 25, № 4. – R. 1-10. (In English).

9. Sharma A. Ecobiology of coal mines and spoils / A. Sharma, G. Sumbali / Journal of Applied and Natural Science. – 2019. – vol.11, № 3. – P. 624-631. (In English).

10. Studying the microbiological solubilization of brown coal / Unitsky A.E. et al // null. – 2022. – vol. 56, № 4. – P.1-15. https://doi.org/10.46646/sakh-2022-2-322-324. (In English).

11. Diversity patterns in microfloras recovered from Miocene brown coals of the lower Rhine Basin reveal distinct coupling of the structure of the peat-forming vegetation and continental climate variability / Utescher et al // Geological Journal. – 2020. – Vol. 56, № 4. – P. 1-18. https://doi.org/10.1002/gj.3801. (In English).

12. Changes in soil physico-chemical and microbiological properties during natural succession: a case study in lower subtropical china / X. Zhao et al // Frontiers in Plant Science. – 2022. – T. 13. – R. 878908. (In English).

13. Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau / B. Wang et al // Environmental Earth Sciences. – 2011. – T. 62. – R. 915-925. (In English).

14. Wastewater Treatment Using Membrane Bioreactor Technologies: Removal of Phenolic Contaminants from Oil and Coal Refineries and Pharmaceutical Industries / M.J. Khan et al // Polymers.– 2024. – T. 16, № 3. – R. 443. (In English).

15. Vítová M. Microbial recovery of rare earth elements from various waste sources: a mini review with emphasis on microalgae / M. Vítová, D. Mezricky // World Journal of Microbiology and Biotechnology. – 2024. – T. 40, № 6. – R. 1-13. (In English).

16. Weiler J. Coal waste derived soil-like substrate: An opportunity for coal waste in a sustainable mineral scenario / J. Weiler, B.A. Firpo, I.A.H. Schneider // Journal of Cleaner Production. – 2018. – T. 174. – R. 739-745. (In English).

17. Gawor L. Coal mining waste dumps as secondary deposits–examples from the Upper Silesian Coal Basin and the Lublin Coal Basin / L. Gawor // Geology, Geophysics and Environment. – 2014. – T. 40, № 3. – R. 285-289. (In English).

18. Feasibility study on the utilization of coal mining waste for Portland clinker production / B. Malagón et al // Environmental science and pollution research. – 2020. – T. 27, № 1. – R. 21-32. (In English). 1

19. GOST 17.4.4.02-2017. Okhrana prirody. Pochvy. Metody otbora i podgotovki prob dlya khimicheskogo, bakteriologicheskogo i gel'mintologicheskogo analiza. – Vved. 2019.01.01. M. Izdvo standartov, 2017. – № 52. – 10 s. (In Russian).

20. Mikrobiologiya i virusologiya: uchebno-metodicheskoe posobie / sost. N.V. Shekhovtsova: Yarosl. gos. un. im. P.G. Demidova. – Yaroslavl': YaRGU, 2017. – 64 s. (In Russian).

21. Lavrenchuk L.S. Mikrobiologiya: praktikum / L.S. Lavrenchuk, A.A. Ermoshin: M-vo nauki i vyssh. obrazovaniya Ros. Federatsii, Ural. feder. un-t. – Ekaterinburg: Izd-vo Ural. un-ta, 2019. – 107 s. (In Russian).

22. Netrusov A.I. Mikrobiologiya: teoriya i praktika v 2 ch. Chast' 1: uchebnik dlya vuzov / A.I. Netrusov, I.B. Kotova. – Moskva: Izdatel'stvo Yurait, 2023. – 315 s. (In Russian).

23. Unifitsirovannye metody issledovaniya kachestva vod. Chast' ІV. Metody mikrobiologicheskogo analiza vod. – M.: «SEHV», 1975. – 35 s. (In Russian).

24. Bergey's manual of systematic bacteriology / Don J. Brenner et al. – Izd. Springer. 2004. – T.1.2. – P. 400. (In English).

25. Satton D. Opredelitel' patogennykh i uslovno patogennykh gribov / D. Satton, A. Fotergil, M. Rinal'di. – M.: Mir, 2001. – 468 s. (In Russian).

26. PureLink™ Genomic DNA Kits. For purification of genomic DNA // https://docviewer.yandex.kz/view/0/?*=4l0. 15.08.2020. (In English).

27. The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal / R.S. Rao et al // Biotechnology journal. – 2008. – vol. 3, № 4. – R. 510-523. https://doi.org/10.1002/biot.200700201. (In English).

28. Ehsanul Tanvir. Basic understanding of biostatistics is necessary for the study of biology particularly doing research in biological science. 27.12. 2020. – Importance of statistics in biotechnology | by Ehsanul Tanvir | Medium. https://tanvirmahtab547.medium.com/importance-ofstatistics-in-biotechnology-761fc226ff2a. (In English).


Review

For citations:


Alikhan A., Issayeva A., Kudasova D., Rakhymberdieva Zh., Rysbaeva Zh. COMPOSITION OF MICROFLORA OF LENGER BROWN COAL WASTE. Bulletin of Shakarim University. Technical Sciences. 2025;(2(18)):166-176. (In Kazakh) https://doi.org/10.53360/2788-7995-2025-2(18)-20

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X