Preview

Bulletin of Shakarim University. Technical Sciences

Advanced search

SYNTHESIS AND STUDY OF SrTiO3/TiO2 HYBRID PEROVSKITE NANOTUBES BY ELECTROCHEMICAL ANODIZATION

https://doi.org/10.53360/2788-7995-2024-2(14)-52

Abstract

Layers of TiO2 nanotubes formed through an anodization process are an area of active research in the context of innovative energy conversion and storage systems. Titanium nanotubes (TNT) have attracted attention due to their unique properties, especially their high surface-to-volume ratio, making them a desirable material for various technological applications. The anodizing method is widely used for the production of TNT due to its simplicity and relative cheapness, the method allows precise control of the thickness of TiO2 nanotubes. Anodizing can also be used to create decorative and colored coatings on titanium nanotubes. In this study, a combined structure comprising anodic TiO2 nanotubes and SrTiO3 particles was created using chemical synthesis methods. TiO2 nanotubes were prepared by anodizing in ethylene glycol containing NH4F and Н2O using a voltage of 30 volts.The anodic nanotube array, heat-treated at 450°C, was then placed in an autoclave filled with a dilute SrTiO3 solution. Scanning electron microscopy (SEM) analysis revealed that TNT are characterized by clear and open tube ends. With an average outer diameter of 1 µm and an inner diameter of 69 nm, and their length is 133 nm.

About the Authors

M. A. Bissenova
Physical and Technical Institute; Institute of Nuclear Physics
Kazakhstan

Madina Bissenova – junior researcher 

050032, Republic of Kazakhstan, Almaty, Ibragimova str., 11

050032, Republic of Kazakhstan, 3/1 Ibragimova str. 



A. G. Umirzakov
Satbaev University; Physical and Technical Institute
Kazakhstan

Arman Umirzakov – researcher 

050032, Republic of Kazakhstan, 22a Satpayev str.

050032, Republic of Kazakhstan, Almaty, Ibragimova str., 11 



K. I. Mit
Physical and Technical Institute
Kazakhstan

Konstantin Mit – senior researcher 

050032, Republic of Kazakhstan, Almaty, Ibragimova str., 11 



A. L. Mereke
Satbaev University; Physical and Technical Institute
Kazakhstan

Almaz Mereke – researcher 

050032, Republic of Kazakhstan, 22a Satpayev str.

050032, Republic of Kazakhstan, Almaty, Ibragimova str., 11 



Ch. B. Daulbaev
Institute of Nuclear Physics
Kazakhstan

Chingiz Daulbaev – PhD, leading researcher 

050032, Republic of Kazakhstan, 3/1 Ibragimova str. 



References

1. Zhang Z. TiO2 nanotube arrays with a volume expansion factor greater than 2.0: Evidence against the field-assisted ejection theory / Z. Zhang, Q. Wang // Electrochem. Commun. – 2020. – V. 114. – P. 106717. DOI: https://doi.org/10.1016/j.elecom.2020.106717. (In English).

2. Galstyan V. Anodic TiO2 nanotubes: A promising material for energy conversion and storage / V. Galstyan, M.J. Macak, T. Djenizian // Appl. Mater. Today. – 2022. – V. 29. – P. 101613. DOI: https://doi.org/10.1016/j.apmt.2022.101613. (In English).

3. Saddique Z. Bismuth-based nanomaterials-assisted photocatalytic water splitting for sustainable hydrogen production / Z. Saddique, M. Imran, A. Javaid // Int. J. Hydrog. Energy. – 2023. DOI: https://doi.org/10.1016/j.ijhydene.2023.05.047. (In English).

4. Razrabotka poristykh struktur na osnove oksidnykh poluprovodnikov / M.A. Bisenova i dr. // Vestnik Gorenie I Plazmokhimiya. – 2021. – T. 19, vyp. 1. DOI: https://doi.org/10.18321/cpc409. (In Russian).

5. The state-of-the-art review on rational design for cavitation assisted photocatalysis / S.J. Wang et al // Mater. Des. – 2023. – V. 234, – P. 112377. DOI: https://doi.org/10.1016/j.matdes.2023.112377. (In English).

6. State-of-the-art review on photocatalysis for efficient wastewater treatment: Attractive approach in photocatalyst design and parameters affecting the photocatalytic degradation / D.E. Lee et al // Catal. Commun. – 2023. – v. 183. – P. 106764. DOI: https://doi.org/10.1016/j.catcom.2023.106764. (In English).

7. A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications / K. Indira et al // J. Bio- Tribo-Corros. – 2015/ – V. 1. – P. 28. DOI: https://doi.org/10.1007/s40735-015-0024-x. (In English).

8. Electrochemical detection of 2,4,6-trinitrotoluene reduction in aqueous solution by using highly ordered 1D TiO2 nanotube arrays / S. Moon et al // Mater. Today Commun. – 2020. – V. 25. – P. 101389. DOI: https://10.1016/j.mtcomm.2020.101389. (In English).

9. Application of a new nano-TiO2 composite antibacterial agent in nursing management of operating room: Based on real-time information push assistant system / A. Xiaoyan et al // Prev. Med. – 2023. – V.172. – P. 107541. DOI: https://10.1016/j.ypmed.2023.107541. (In English).

10. Yin H. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization / H. Yin, H. Liu, W. Shen // Nanotechnology. – 2009. – V. 21, I. 3. – P. 035601. DOI: https://10.1088/0957-4484/21/3/035601. (In English).

11. Highly ordered combined structure of anodic TiO2 nanotubes and TiO2 nanoparticles prepared by a novel route for dye-sensitized solar cells / T. Ghani et al // J. Saudi Chem. Soc. – 2019. – V. 23, I. 8. – P. 1231-1240. DOI: https://10.1016/j.jscs.2019.08.003. (In English).

12. Poluchaemyi iz biootkhodov mnogosloinyi grafen/srtio3 kak ehffektivnaya fotokataliticheskaya sistema / ZH. Kuspanov i dr. // Vestnik Gorenie I Plazmokhimiya. – 2023. – V. 21, vyp. 2. DOI: https://10.18321/cpc21(2)71-80. (In Russian).

13. Anodic growth of TiO2 nanotube arrays: Effects of substrate curvature and residual stress / W. Zhang, et al // Surf. Coat. Technol. – 2023. – V. 469. – P. 129783. DOI: https://10.1016/j.surfcoat.2023.129783. (In English).

14. TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion / M. Paulose et al // J. Phys. Chem. C. – 2007. – V. 111., I. 41. – P. 14992-14997. DOI: https://10.1021/jp075258r. (In English).

15. Moulis F. Photocatalytic degradation of several VOCs (n-hexane, n-butyl acetate and toluene) on TiO2 layer in a closed-loop reactor / F. Moulis, J. Krýsa // Catalysis Today. – 2013. – V. 209. – P. 153-158. DOI: https://doi.org/10.1016/j.cattod.2012.10.017. (In English).

16. Hou X. Controlling anodization time to monitor film thickness, phase composition and crystal orientation during anodic growth of TiO2 nanotubes / X. Hou, P.D. Lund, Y. Li // Electrochem. Commun. – 2022. – V. 134. – P. 107168. DOI: https://10.1016/j.elecom.2021.107168. (In English).

17. Ideally Hexagonally Ordered TiO2 Nanotube Arrays / H. Sopha, et al // Chemistry Open. – 2017. – V. 6, I. 4. – P. 480-483. DOI: https://10.1002/open.201700108. (In English).

18. Lee K. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes / K. Lee, A. Mazare, P. Schmuki // Chem. Rev. – 2014. – V. 114, I. 19. – P. 9385-9454. DOI: https://10.1021/cr500061m. (In English).

19. One-Step Decoration of TiO2 Nanotubes with Fe3O4 Nanoparticles: Synthesis and Photocatalytic and Magnetic Properties / D. Beketova, et al // ACS Appl. Nano Mater. – 2020. – V. 3, I. 2. – P. 1553-1563. DOI: https://10.1021/acsanm.9b02337. (In English).

20. Tak M. Synthesis of titanium nanotubes (TNT) and its influence on electrochemical micromachining of titanium / M. Tak, H. Tomar, R.G. Mote // Procedia CIRP. – 2020. – V. 95. – P. 803-808, DOI: https://10.1016/j.procir.2020.01.140. (In English).


Review

For citations:


Bissenova M.A., Umirzakov A.G., Mit K.I., Mereke A.L., Daulbaev Ch.B. SYNTHESIS AND STUDY OF SrTiO3/TiO2 HYBRID PEROVSKITE NANOTUBES BY ELECTROCHEMICAL ANODIZATION. Bulletin of Shakarim University. Technical Sciences. 2024;1(2(14)):423-432. (In Russ.) https://doi.org/10.53360/2788-7995-2024-2(14)-52

Views: 146


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X