Preview

Вестник Университета Шакарима. Серия технические науки

Расширенный поиск

ОБЗОР ПО ПЕРЕРАБОТКЕ УГОЛЬНОЙ ЛЕТУЧЕЙ ЗОЛЫ: ТЕКУЩИЕ ДОСТИЖЕНИЯ И ПЕРСПЕКТИВЫ НА БУДУЩЕЕ

https://doi.org/10.53360/2788-7995-2024-2(14)-51

Аннотация

Целью данного обзора является анализ методов переработки угольной летучей золы (УЛЗ) и их последствий. В исследовании рассматривается исследовательская проблема повышения эффективности использования УЛЗ при минимизации воздействия на окружающую среду. Обзор основан на принципах устойчивого развития, экономики замкнутого цикла и ресурсосбережения. Он опирается на теории, связанные с обращением с отходами, материаловедением и инженерной экологией. Был проведен систематический обзор литературы, проанализированы исследовательские статьи, технические отчеты и отраслевые публикации. Обзор включает всестороннее изучение методов переработки, включая разделение, обогащение, утилизацию и методы обработки. Используемые методы исследования включали синтез данных и анализ выявленных исследований. В обзоре освещаются эффективность и ограничения различных методов обработки УЛЗ, таких как электростатическая сепарация, магнитная сепарация и пенная флотация. В нем представлена информация об улучшениях, достигнутых в результате обработки, включая повышение качества УЛЗ, расширение сферы применения и рекуперацию ресурсов. Полученные результаты подчеркивают важность всесторонней характеристики УЛЗ, понимания его состава и свойств, а также оптимизации методов обработки для максимизации его потенциала. Исследование способствует академическому пониманию методов обработки УЛЗ, обеспечивая основу для дальнейших исследований в этой области. С управленческой точки зрения он предлагает рекомендации отраслям, участвующим в утилизации УЛЗ, продвигая устойчивые методы обращения с отходами и ресурсосбережения. Обзор имеет значительные социальные последствия, поскольку снижает воздействие на окружающую среду, связанное с утилизацией УЛЗ, и поддерживает развитие принципов экономики замкнутого цикла.

Об авторах

К. Камунур
Институт проблем горения; Казахский национальный университет им. аль-Фараби
Казахстан

Кастер Камунур – PhD доктор, ведущий научный сотрудник, РГП на ПХВ 

050012, Республика Казахстан, г. Алматы, ул. Богенбай батыра, 172

050012, Республика Казахстан, г. Алматы, пр. аль-Фараби, 71 



Т. Осеров
Институт проблем горения
Казахстан

Тимур Осеров – PhD доктор, ведущий научный сотрудник, РГП на ПХВ 

050012, Республика Казахстан, г. Алматы, ул. Богенбай батыра, 172



Л. Мусапирова
Институт проблем горения
Казахстан

Ляззат Мусапирова – PhD доктор, научный сотрудник, РГП на ПХВ 

050012, Республика Казахстан, г. Алматы, ул. Богенбай батыра, 172



А. Баткал
Институт проблем горения; Казахский национальный университет им. аль-Фараби
Казахстан

Aйсулу Баткал – PhD студент, научный сотрудник, РГП на ПХВ

050012, Республика Казахстан, г. Алматы, ул. Богенбай батыра, 172

050012, Республика Казахстан, г. Алматы, пр. аль-Фараби, 71 



Список литературы

1. Status of coal-based thermal power plants, coal fly ash production, utilization in India and their emerging applications / V.K. Yadav et al // Minerals. – 2022. – Vol. 12, № 12. – P.1503. DOI: https://doi.org/10.3390/min12121503.

2. Vig N. The multiple value characteristics of fly ash from Indian coal thermal power plants: a review / N. Vig, S. Mor., K. Ravindra // Environmental Monitoring and Assessment. – 2023. – Vol. 195, № 1. – Р.33. DOI: https://doi.org/10.1007/s10661-022-10473-2.

3. Blissett R.S. A review of the multi-component utilisation of coal fly ash / R.S. Blissett, N.A. Rowson // Fuel. – 2012. – Vol. 97. – P.1-23. DOI: https://doi.org/10.1016/j.fuel.2012.03.024.

4. Czech T. Morphology and chemical composition of magnetic particles separated from coal fly ash / T. Czech // Materials. – 2022. – Vol. 15, № 2. – P. 28. DOI: https://doi.org/10.3390/ma15020528.

5. Liu H. Particle size distributions of fly ash arising from vaporized components of coal combustion: A comparison of theory and experiment / H. Liu, Y. Wang, J.O. Wendt // Energy & Fuels. – 2017. – Vol. 32, № 4. – P.4300-4307.

6. New potential demulsifiers obtained by processing gossypol resin / N.S. Otarbaev et al // Indonesian Journal of Chemistry. – 2019. – Vol, 19, № 4. – P.959-966. DOI: https://doi.org/10.22146/ijc.38671.

7. Quartz particles electron-microscopic investigations modified by mechanochemical processing / N.N. Mofa et al // Eurasian Chemico-Technological Journal. – 2003. – Vol. 5, № 4. – Р. 297-303. DOI: https://doi.org/10.18321/ectj317.

8. Gollakota A.R. Progressive utilisation prospects of coal fly ash: A review / A.R. Gollakota, V. Volli, C.M. Shu // Science of the Total Environment. – 2019. – Vol. 672. – P.951-989. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.337.

9. Dwivedi A. Fly ash-waste management and overview: A Review / A. Dwivedi, M.K. Jain // Recent Research in Science and Technology. – 2014. – Vol. 6, № 1.

10. Krasnyi B.L. Fly ash as technogenic raw material for producing refractory and insulating ceramic materials / B.L. Krasnyi et al // Glass and Ceramics. – 2021. – Vol. 78. – P. 48-56. DOI: https://doi.org/10.1007/s10717-021-00347-3.

11. Physico-Chemical Study of the Possibility of Utilization of Coal Ash by Processing as Secondary Raw Materials to Obtain A Composite Cement Clinker / B. Muratov et al // Journal of Composites Science. – 2023. – Vol. 7, № 6. – P.234. DOI: https://doi.org/10.3390/jcs7060234.

12. Panda L. Characterization and utilization of coal fly ash: a review / L. Panda, S. Dash // Emerging Materials Research. – 2020. – Vol. 9, № 3. – Р. 921-934. DOI: https://doi.org/10.1680/jemmr.18.00097.

13. A comprehensive review on the applications of coal fly ash / Z.T. Yao et al // Earth-science reviews. – 2015. – Vol. 141. – P.105-121. DOI: https://doi.org/10.1016/j.earscirev.2014.11.016.

14. Alehyen S. Characterization, microstructure and properties of fly ash-based geopolymer / S. Alehyen, M.E.L. Achouri, M. Taibi // J. Mater. Environ. Sci. – 2017. – Vol. 8, № 5. – Р. 1783-1796.

15. A review of the alumina recovery from coal fly ash, with a focus in China / Z.T. Yao et al // Fuel. – 2014. – Vol. 120. – P. 74-85. DOI: https://doi.org/10.1016/j.fuel.2013.12.003.

16. Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials / J. Temuujin et al // Ceramics International. – 2014. – Vol. 40, № 10. – Р.16475-16483. DOI: https://doi.org/10.1016/j.ceramint.2014.07.157.

17. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash / E.I. Diaz-Loya et al // Waste Management. – 2012. – Vol. 32, № 8. – Р. 1521-1527. DOI: https://doi.org/10.1016/j.wasman.2012.03.030.

18. Recycling of coal fly ash as an example of an efficient circular economy: A stakeholder approach / O. Marinina et al // Energies. – 2021. – Vol. 14, № 12. – Р. 3597. DOI: https://doi.org/10.3390/en14123597.

19. Fly ash pollutants, treatment and recycling / A. Gianoncelli et al // Pollutant diseases, remediation and recycling. – 2013. – P. 103-213. DOI: https://doi.org/10.1007/978-3-319-02387-8_3.

20. Zero-waste approach in municipal solid waste incineration: Reuse of bottom ash to stabilize fly ash / A. Assi et al // Journal of cleaner production. – 2020. – Vol. 245. – P. 118779. DOI: https://doi.org/10.1016/j.jclepro.2019.118779.

21. Chemical stability of geopolymers containing municipal solid waste incinerator fly ash / I. Lancellotti et al // Waste Management. – 2010. – Vol. 30, № 4. – P. 673-679. DOI: https://doi.org/10.1016/j.wasman.2009.09.032.

22. Extraction of value-added minerals from various agricultural, industrial and domestic wastes / V.K. Yadav et al // Materials. – 2021. – Vol. 14, № 21. – P. 6333. DOI: https://doi.org/10.3390/ma14216333.

23. Synthesis and characterisation of pure phase ZSM-5 and sodalite zeolites from coal fly ash / N.Z. Ndlovu et al // Materials Today Communications. – 2023. – Vol. 34. – P. 105436. DOI: https://doi.org/10.1016/j.mtcomm.2023.105436.

24. Biomass fly ash as an alternative to coal fly ash in blended cements: Functional aspects / J. Fořt et al // Construction and Building Materials. – 2021. – Vol. 271. – P. 121544. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121544.

25. Effect of seawater salinity on the synthesis of zeolite from coal fly ash / Y. Yu et al // Frontiers of Environmental Science & Engineering. – 2014. – Vol. 8. – P. 54-61. DOI: https://doi.org/10.1007/s11783-013-0493-4.

26. Shaheen S.M. Opportunities and challenges in the use of coal fly ash for soil improvements–a review / S.M. Shaheen, P.S. Hooda, C.D. Tsadilas // Journal of environmental management. – 2014. – Vol. 145. – P. 249-267. DOI: https://doi.org/10.1016/j.jenvman.2014.07.005.

27. Shemi A., Ndlovu S., Sibanda V., Van Dyk L.D. Extraction of alumina from coal fly ash using an acid leach-sinter-acid leach technique // Hydrometallurgy. – 2015. – Vol.157. – P. 348-355. DOI: https://doi.org/10.1016/j.hydromet.2015.08.023.

28. Bendapudi S.C.K. Contribution of fly ash to the properties of mortar and concrete / S.C.K. Bendapudi, P. Saha // International Journal of Earth Sciences and Engineering. – 2011. – Vol. 4, № 6. – P. 1017-1023.

29. Enrichment characteristics, thermal stability and volatility of hazardous trace elements in fly ash from a coal-fired power plant / S. Zhao et al // Fuel. – 2018. – Vol. 225. – P. 490-498. DOI: https://doi.org/10.1016/j.fuel.2018.03.190.

30. Leachability and adverse effects of coal fly ash: A review / N. Wang // Journal of hazardous materials. – 2020. – Vol. 396. – P. 122725. DOI: https://doi.org/10.1016/j.jhazmat.2020.122725.

31. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methods-A critical review / D.M. Xu et al // Journal of Cleaner Production. – 2021. – Vol. 321. – P. 128730. DOI: https://doi.org/10.1016/j.jclepro.2021.128730/

32. Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management / P.K. Sahoo et al // International Journal of Coal Science & Technology. – 2016. – Vol. 3, № 3. – P. 267-283. DOI: https://doi.org/10.1007/s40789-016-0141-2.

33. Nandanam K. Effect of fly ash, GGBS, and metakaolin on mechanical and durability properties of self-compacting concrete made with 100% coarse recycled aggregate / K. Nandanam, U.S. Biswal, P. Dinakar // Journal of Hazardous, Toxic, and Radioactive Waste. – 2021. – Vol. 25, № 2. – P. 04021002. DOI: https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000595.

34. Kursun Unver I. Distribution of trace elements in coal and coal fly ash and their recovery with mineral processing practices: A review / I. Kursun Unver, M. Terzi // Journal of Mining and Environment. – 2018. – Vol. 9, № 3. – P. 641-655.

35. Recent advances in the intensification of triboelectric separation and its application in resource recovery: A review / J. He et al // Chemical Engineering and Processing-Process Intensification. – 2023. – P. 109308. DOI: https://doi.org/10.1016/j.cep.2023.109308.

36. Analysis of protein enrichment during single-and multi-stage tribo-electrostatic bioseparation processes for dry fractionation of legume flour / S. Tabtabaei // Separation and Purification Technology. – 2017. – Vol. 176. – P. 48-58. DOI: https://doi.org/10.1016/j.seppur.2016.11.050.

37. Fotovat F. Electrostatics in gas-solid fluidized beds: A review / F. Fotovat, X.T. Bi, J.R. Grace // Chemical Engineering Science. – 2017. – Vol. 173. – P. 303-334. DOI: https://doi.org/10.1016/j.ces.2017.08.001.

38. Afshar-Mohajer N. Electrostatic collection of tribocharged lunar dust simulants / N. Afshar-Mohajer, C.Y. Wu, Sorloaica-Hickman N. // Advanced Powder Technology. – 2014. – Vol. 25, № 6. – P. 1800-1807. DOI: https://doi.org/10.1016/j.apt.2014.07.010.

39. Review on occurrence, speciation, transition and fate of sulfur in typical ultra-low emission coalfired power plants / Z. Zhou et al // Journal of the Energy Institute. – 2022. – Vol. 100. – P. 259-276. DOI: https://doi.org/10.1016/j.joei.2021.12.004.

40. Separation of unburned carbon from coal fly ash: A review / Y. Xing et al // Powder Technology. –2019. – Vol. 353. – P. 372-384. DOI: https://doi.org/10.1016/j.powtec.2019.05.037.

41. Investigation on the effects of fluid intensification based preconditioning process on the decarburization enhancement of fly ash / D. Li et al // Chinese Journal of Chemical Engineering. – 2022. – Vol. 44. – P.275-283. DOI: https://doi.org/10.1016/j.cjche.2021.03.001.

42. Recent advances and conceptualizations in process intensification of coal gasification fine slag flotation / Z. Xue et al // Separation and Purification Technology. – 2022. – P. 22394. DOI: https://doi.org/10.1016/j.seppur.2022.122394.

43. Mallampati S.R. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite / S.R. Mallampati, J.H. Heo, M.H. Park // Journal of hazardous materials. – 2016. – Vol. 306. – P. 13-23. DOI: https://doi.org/10.1016/j.jhazmat.2015.11.054.

44. Zhang L., Yang F., Tao Y. Removal of unburned carbon from fly ash using enhanced gravity separation and the comparison with froth flotation / L. Zhang, F. Yang, Y. Tao // Fuel. – 2020. – Vol. 259. – P. 116282. DOI: https://doi.org/10.1016/j.fuel.2019.116282.

45. Noble A. A review of state-of-the-art processing operations in coal preparation / A. Noble, G.H. Luttrell // International Journal of Mining Science and Technology. – 2015. – Vol. 25, № 4. – P. 511-521. DOI: https://doi.org/10.1016/j.ijmst.2015.05.001.

46. Developments in characterization and mineral processing of coal Fly ash for recovery of rare earth elements / T. Sreenivas et al // In Clean Coal Technologies: Beneficiation, Utilization, Transport Phenomena and Prospective. – 2021. – P. 431-471. DOI: https://doi.org/10.1007/978-3-030-68502-7_17.

47. Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes / J. Pan et al // Journal of Cleaner Production. – 2021. – Vol. 284. – P.124725. DOI: https://doi.org/10.1016/j.jclepro.2020.124725.

48. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching / J. Pan et al // Chemosphere. – 2020. – Vol. 248. – P. 126112. DOI: https://doi.org/10.1016/j.chemosphere.2020.126112.

49. Coal fly ash derived silica nanomaterial for MMMs-application in CO2/CH4 separation / M.G. Miricioiu et al // Membranes. – 2021. – Vol. 11, № 2. – P. 78. DOI: https://doi.org/10.3390/membranes11020078.

50. Arroyo F. Hydrometallurgical recovery of germanium from coal gasification fly ash. Solvent extraction method / F. Arroyo, C. Fernandez-Pereira // Industrial & Engineering Chemistry Research. – 2008. – P. 47, № 9. – P. 3186-3191. DOI: https://doi.org/10.1021/ie7016948.

51. Selective recovery of rare earth elements from coal fly ash leachates using liquid membrane processes / R.C. Smith et al // Environmental science & technology. – 2019. – Vol. 53, № 8. – P. 4490-4499. DOI: https://doi.org/10.1021/acs.est.9b00539.

52. Zhu Y. Supercritical carbon dioxide/nitrogen/air extraction with multistage stripping enables selective recovery of rare earth elements from coal fly ashes / Y. Zhu, G. Wang, Y.S. Jun // RSC Sustainability. – 2023. – Vol. 1, № 2. – P. 251-260. DOI: https://doi.org/10.1039/D2SU00033D.

53. Zhang W. Studies on carbon flotation from fly ash / W. Zhang, R. Honaker // Fuel processing technology. – 2015. – Vol. 139. – P. 236-241. DOI: https://doi.org/10.1016/j.fuproc.2015.06.045.

54. Possibilities of graphitization of unburned carbon from coal fly ash / Z. Adamczyk et al // Minerals. – 2021. – Vol. 11, № 9. – P. 1027. DOI: https://doi.org/10.3390/min11091027.

55. Mofa N.N. Self-propagating high-temperature synthesis of ceramic materials from mechanically activated materials / N.N. Mofa, T.A. Ketegenov, G.P. Metaksa // Chemical Physics Reports. – 1997. – Vol. 16, № 5. – P. 903-910.

56. Extending supplementary cementitious material resources: Reclaimed and remediated fly ash and natural pozzolans / I. Diaz-Loya et al // Cement and concrete composites. – 2019. – Vol. 101. – P. 44-51. DOI: https://doi.org/10.1016/j.cemconcomp.2017.06.011.

57. Federico L.M. Waste glass as a supplementary cementitious material in concrete–critical review of treatment methods / L.M. Federico, S.E. Chidiac // Cement and concrete composites. – 2009. – Vol. 31, № 8. – P. 606-610. DOI: https://doi.org/10.1016/j.cemconcomp.2009.02.001.

58. Characterization of sugarcane bagasse ash as a potential supplementary cementitious material: Comparison with coal combustion fly ash / P. Zhang et al // Journal of Cleaner Production. – 2020. – Vol. 277. – P. 123834. DOI: https://doi.org/10.1016/j.jclepro.2020.123834.

59. Fly ash-based geopolymer: clean production, properties and applications / X.Y. Zhuang et al // Journal of Cleaner Production. – 2016. – Vol. 125. – P. 253-267. DOI: https://doi.org/10.1016/j.jclepro.2016.03.019.

60. Toniolo N. Fly ash-based geopolymers containing added silicate waste. A review / N. Toniolo, A.R. Boccaccini // Ceramics International. – 2016. – Vol. 43, № 17. – P. 14545-14551. DOI: https://doi.org/10.1016/j.ceramint.2017.07.221.

61. ul Haq E. Synthesis and characteristics of fly ash and bottom ash based geopolymers – A comparative study / E. ul Haq, S.K. Padmanabhan, A. Licciulli // Ceramics International. – 2014. – Vol. 40, № 2. – P. 2965-2971. DOI: https://doi.org/10.1016/j.ceramint.2013.10.012.

62. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence / Z. Zhang et al // Cement and concrete research. – 2014. – Vol. 64. – P. 30-41. DOI: https://doi.org/10.1016/j.cemconres.2014.06.004.

63. Ahmaruzzaman M. A review on the utilization of fly ash / M. Ahmaruzzaman // Progress in energy and combustion science. – 2010. – Vol. 36, № 3. – P. 327-363. DOI: https://doi.org/10.1016/j.pecs.2009.11.003.

64. Optimization of fly ash based soil stabilization using secondary admixtures for sustainable road construction / R. Renjith et al // Journal of Cleaner Production. – 2021. – Vol. 294. – P. 126264. DOI: https://doi.org/10.1016/j.jclepro.2021.126264.

65. Coal fly ash: an emerging material for water remediation / N.B. Singh et al // International Journal of Coal Science & Technology. – 2022. – Vol. 9, № 1. – P. 44. DOI: https://doi.org/10.1007/s40789-022-00512-1.

66. Potential fly-ash utilization in agriculture: a global review / M. Basu et al // Progress in Natural Science. – 2009. – Vol. 19, № 10. – P. 1173-1186. DOI: https://doi.org/10.1016/j.pnsc.2008.12.006.

67. Sulfur dioxide removal: An overview of regenerative flue gas desulfurization and factors affecting desulfurization capacity and sorbent regeneration / M.A. Hanif et al // Environmental Science and Pollution Research. – 2020. – Vol. 27. – P. 27515-27540. DOI: https://doi.org/10.1007/s11356-020-09191-4.

68. Properties of fly ash from forest biomass combustion / R.P. Girón et al // Fuel. – 2013. – Vol. 114. – P. 71-77. DOI: https://doi.org/10.1016/j.fuel.2012.04.042.


Рецензия

Для цитирования:


Камунур К., Осеров Т., Мусапирова Л., Баткал А. ОБЗОР ПО ПЕРЕРАБОТКЕ УГОЛЬНОЙ ЛЕТУЧЕЙ ЗОЛЫ: ТЕКУЩИЕ ДОСТИЖЕНИЯ И ПЕРСПЕКТИВЫ НА БУДУЩЕЕ. Вестник Университета Шакарима. Серия технические науки. 2024;1(2(14)):410-423. https://doi.org/10.53360/2788-7995-2024-2(14)-51

For citation:


Kamunur K., Oserov T., Mussapirova L., Batkal A. REVIEW ON PROCESSING COAL FLY ASH: CURRENT ADVANCES AND FUTURE PERSPECTIVES. Bulletin of Shakarim University. Technical Sciences. 2024;1(2(14)):410-423. https://doi.org/10.53360/2788-7995-2024-2(14)-51

Просмотров: 165


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X