Preview

Вестник Университета Шакарима. Серия технические науки

Расширенный поиск

ЭКСТРАКЦИОННАЯ СЕРООЧИСТКА НЕФТЯНОГО ТОПЛИВА С ИСПОЛЬЗОВАНИЕМ ГЛУБОКОЭВТЕКТИЧЕСКИХ РАСТВОРИТЕЛЕЙ

https://doi.org/10.53360/2788-7995-2024-2(14)-58

Аннотация

В ближайшие десятилетия невозможно недооценить важность создания экологически чистой энергетики и связанных с ней применений. Доказано, что минимизация и устранение токсичных выбросов имеют решающее значение для выживания нашей планеты. Соединения серы (S) в топливе приводят к образованию токсичных выбросов, представляющих серьезную угрозу для окружающей среды. Поэтому во всем мире активизировались исследования процесса сероочистки для получения топлива с низким содержанием S. Традиционная технология гидродесульфуризации (HDS) не получила широкого распространения из-за ряда недостатков, таких как высокая стоимость, повышенное потребление электроэнергии, повышенное образование водорода и использование катализаторов с высоким содержанием благородных металлов. Перспективной альтернативой HDS является процесс экстрактивной сероочистки (EDS) благодаря мягким условиям эксплуатации. В последние годы большое внимание в исследованиях уделяется использованию глубокоэвтектических растворителей (DES), образующихся из эвтектической смеси кислот и оснований Льюиса/Бренстеда.
Целью данного обзора является обсуждение преимуществ EDS с использованием DES по сравнению с другими методами сероочистки, а также описание различных факторов сероочистки, таких как природа DES, массовое соотношение DES и топлива, температура, взаимная растворимость, время, начальное содержание S. Потенциальные проблемы и недостатки EDS с использованием DES изучены достаточно полно. В данном обзоре обсуждаются вопросы применения DES в качестве экстрагентов для получения экологически чистого топлива вместо традиционных органических растворителей. Необходимость обозревания исследований по данной тематики исходит из актуальности поиска более экологически чистых соединений, соответствующих всем принципам «зеленой химии». В обзоре рассмотрены исследования за последние 10-20 лет в области применения DES в качестве экстрагентов для очистки топлив от серосоединений.

Об авторах

А. Ж. Керимкулова
КазНИТУ имени К.И.Сатпаева
Казахстан

Айгуль Жадраевна Керимкулова – Кандидат химических наук, ассоциированный профессор кафедры ХиБИ 

050013, Республика Казахстан, г. Алматы, ул. Сатпаева 22 а 



Х. С. Рафикова
КазНИТУ имени К.И.Сатпаева
Казахстан

Хадичахан Сабыржановна Рафикова – PhDДоктор, ассоциированный профессор кафедры ХиБИ

050013, Республика Казахстан, г. Алматы, ул. Сатпаева 22 а 



Н. Б. Булатова
КазНИТУ имени К.И.Сатпаева
Казахстан

Нурлыару Булатовна Булатова – магистрант, Satbayev University, г. Алматы, Республика
Казахстан; е-mail:  

050013, Республика Казахстан, г. Алматы, ул. Сатпаева 22 а 



Д. О. Абдирафиева
КазНИТУ имени К.И.Сатпаева
Казахстан

Диана Олеговна Абдирафиева – магистрант

050013, Республика Казахстан, г. Алматы, ул. Сатпаева 22 а 



М. Е. Дариджан
Алматинский технологический университет

Мадина Еркінқызы Дариджан – магистрант

050013, Республика Казахстан, город Алматы, ул. Толе би, 100 



Список литературы

1. Desulphurization of fuel oils using ILs, in: Petrochemical Catal / A.W. Bhutto et al // Mater. Process. Emerg. Technol., IGI Global. – 2016. – P. 254-284.

2. Oxidative desulfurization of gasoline by ILs coupled with extraction by organic solvents / R. Abro et al // J. Braz. Chem. Soc. – 2016. – № 27. – Р. 998-1006.

3. Deep desulfurization performance of thiophene with deep eutectic solvents loaded carbon nanotube composites / Y. Liu et al // R.Soc.Open Sci. – 2021. – № 8. DOI: https://doi.org/10.1098/rsos.201736.

4. Seeberger A. Desulfurization of diesel oil by selective oxidation and extraction of sulfur compounds by ILs-a contrib. to a compet.process design / A. Seeberger, A. Jess // GreenChem. – 2010. – № 12. – Р. 602-608.

5. Showcasing a review on deep eutectic solvents by As featured in: reaction Chemistry & Engineering Deep eutectic solvents: alternative reaction media for organic oxidation reactions / G. Di Carmine et al // React. Chem. Eng. – 2021. – № 6. DOI: https://doi.org/10.1039/d0re00458h.

6. A review of extractive desulfurization of fuel oils using ILs / R. Abro et al // RSC Adv. – 2014. № 4. – Р. 35302-35317.

7. Deep eutectic solvents as alternative green solvents for the efficient desulfurization of liquid fuel: a comprehensive review / S. Tahir et al // Fuel. – 2021. – № 305. – Р. 121502.

8. Simultaneously saccharification and fermentation approach as a tool for enhanced fossil fuels biodesulfurization / S.M. Paix˜ao et al // J. Environ. Manag. – 2016. – № 182. – Р. 397-405.

9. ILs in refinery desulfurization: comparison between biphasic and supported ionic liquid phase suspension processes / E. Kuhlmann et al // ChemSusChem Chem. Sustain. Energy Mater. – 2009. – № 2. – Р. 969-977.

10. Extractive desulfurization of fuel oils with low-viscosity dicyanamide-based ILs / C. Asumana et al // Green Chem. – 2010. – № 12. – Р. 2030-2037.

11. Extractive desulfurization of diesel fuel by amide-based type IV deep eutectic solvents / L. Xu et al // J. Mol. Liq. – 2021. – № 338. – Р. 116620. DOI: https://doi.org/10.1016/j.molliq.2021.116620.

12. Visible-light driven degradation of tetracycline hydrochloride and 2,4-dichlorophenol by film-like Ncarbon@N-ZnO catalyst with three-dimensional interconnected nanofibrous structure / X. Chen et al // J. Hazard. Mater. – 2020. – № 392. – Р. 122331. DOI: https://doi.org/10.1016/j.jhazmat.2020.122331.

13. Desulfurization of fuel oils: mutual solubility of ILs and fuel oil / S. Gao et al // Fuel. – 2016. – № 173. – Р. 164-171.

14. Ahmadian M. Oxidative desulfurization of liquid fuels using polyoxometalate-based catalysts: a review / M. Ahmadian, M. Anbia // Energy Fuels. – 2021. – № 35. – Р. 10347-10373.

15. Hernandez-Maldonado A.J. Desulfurization of transportation fuels by π-complexation sorbents: Cu (I)-, Ni (II)-, and Zn (II)- zeolites / A.J. Hernandez-Maldonado,´F.H. Yang, G.Qi, R.T. Yang // Appl. Catal. B Environ. – 2005. – № 56. – Р. 111-126.

16. Extractive desulfurization of fuel oil with metal-based ILs / T.-J. Ren et al // Chin. Chem. Lett. – 2015. – № 26. – Р. 1169-1173.

17. Girgis M.J. Reactivities, reaction networks, and kinetics in highpressure catalytic hydroprocessing / M.J. Girgis, B.C. Gates // Ind. Eng. Chem. Res. – 2021. – № 30(1991) – Р. 2058.

18. Overview of acidic deep eutectic solvents on synthesis, properties and applications / H. Qin et al // Green Energy Environ. – 2020. – № 5. – Р. 8-21. DOI: https://doi.org/10.1016/j.gee.2019.03.002.

19. Zhang S. Extractive desulfurization and denitrogenation of fuels using ILs / S. Zhang, Q. Zhang, Z.C. Zhang // Ind. Eng. Chem. Res. – 2004. – № 43. – Р. 614-622.

20. Extractive desulfurization of liquid fuel by using a green, neutral and task specific phosphonium ionic liquid with glyceryl moiety: a joint experimental and computational study / F.R. Moghadam et al // Fuel. – 2017. – № 208. – Р. 214-222.

21. Removal of benzothiophene by extraction with deep eutectic solvents [Bmim]Br-Polyalcohol / L. Wenshen et al // China Pet. Process. Petrochem. Technol. – 2020. – № 22. – Р. 49-55.

22. Promising technological and industrial applications of deep eutectic systems / A. Mannu et al // Mater. Rev. – 2021.

23. Concurrent desulfurization and denitrogenation of fuels using deep eutectic solvents / F. Lima et al // Sustain. Chem. Eng. – 2020. DOI: https://doi.org/10.1021/acssuschemeng.9b00877.

24. The role of ILs in desulfurization of fuels: a review / M.H. Ibrahim et al // Renew. Sustain. Energy Rev. – 2017. – № 76. – Р. 1534-1549.

25. One-pot oxidative desulfurization of fuels using dual-acidic deep eutectic solvents / W. Liu et al // Fuel. – 2020. – № 265. – Р. 116967. DOI: https://doi.org/10.1016/j.fuel.2019.116967.

26. Forte P. Process for the removal of sulfur from petroleum fractions. / P. Forte. – 1996.

27. Desulfurization and denitration of light oil by extraction / Y. Horii et al. – 1996.

28. Katasonova O.N. Extraction methods for removing sulfur and its compounds from crude oil and petroleum products, Russ / O.N. Katasonova, E.Y. Savonina, T.A. Maryutina // J. Appl. Chem. – 2021. – № 94. – Р. 411-436. DOI: https://doi.org/10.1134/S1070427221040017.

29. Feasibility of phosphonium-based ILs as solvents for extractive desulfurization of liquid fuels / O.U. Ahmed et al // Fluid Phase Equilib. – 2015. – № 401. – Р. 102-109.

30. Deep desulfurization of diesel fuel by extraction with ILs / A. Bosmann et al // Chem. Commun. – 2001. – Р. 2494-2495.

31. Wang, Extractive desulfurization of gasoline using imidazolium-based phosphoric ILs / Y. Nie et al // Energy Fuels. – 2006. – № 20. – Р. 2083-2087.

32. Eßer J. Deep desulfurization of oil refinery streams by extraction with ILs / J. Eßer, P. Wasserscheid, A. Jess // Green Chem. – 2004. – № 6. – Р. 316-322.

33. Desulfurization of fuel by extraction with pyridinium-based ILs / H. Gao et al // Ind. Eng. Chem. Res. – 2008. – № 47. – Р. 8384-8388.

34. Plechkova N.V. Applications of ILs in the chemical industry / N.V. Plechkova, K.R. Seddon // Chem. Soc. Rev. – 2008. – № 37. – Р. 123-150.

35. Heterogeneous catalysts SILP with phosphotungstic acid for oxidative desulfurization: effect of ionic liquid / A.A. Bryzhin et al // Kinet. Catal. – 2020. – № 61. – Р. 775-785. DOI: https://doi.org/10.1134/S0023158420050018.

36. Preparation of novel, moisture-stable, Lewis-acidic ILs containing quaternary ammonium salts with functional side chainsElectronic supplementary information (ESI) available: plot of conductivity vs. temperature for the ionic liquid formed from zinc chloride and choline chloride (2∶1) / A.P. Abbott et al // Chem. Commun, 2001. – Р. 2010-2011.

37. Deep desulfurization of fuels with cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic solvents / H. Xu et al // Fuel. – 2018. – № 225. – Р. 104-110.

38. Combined extractive dearomatization, desulfurization, and denitrogenation of oil fuels using deep eutectic solvents: a parametric study / S.E.E. Warrag et al // Ind. Eng. Chem. Res. – 2020. – № 59. – Р. 11723-11733. DOI: https://doi.org/10.1021/acs. iecr.0c01360.

39. Study on the desulfurization and regeneration performance of functional deep eutectic solvents / B. Wang et al // ACS Omega. – 2020. – № 5. – Р. 15353-15361. DOI: https://doi.org/10.1021/acsomega.0c01467.

40. Nie Y. Extractive desulfurization of fuel oil using alkylimidazole and its mixture with dialkylphosphate ILs / Y. Nie, C.-X. Li, Z.-H. Wang // Ind. Eng. Chem. Res. – 2007. – № 46. – Р. 5108-5112.

41. Parkinson G. Diesel desulfurization puts refiners in a quandary / G. Parkinson // Chem. Eng. – 2001. – № 108. – Р. 37.

42. Dehghan R. Zeolites for adsorptive desulfurization from fuels: a review / R. Dehghan, M. Anbia // Fuel Process. Technol. – 2017. – № 167. – Р. 99-116.

43. Ganiyu S.A. Review of adsorptive desulfurization process: overview of the non-carbonaceous materials, mechanism and synthesis strategies / S.A. Ganiyu, S.A. Lateef // Fuel. – 2021. – № 294. – Р. 120273.

44. Combination of coordinatively unsaturated metal sites and silver nano-particles in a Ni-based metal-organic framework for adsorptive desulfurization / C. Huang et al // Microporous Mesoporous Mater. – 2021. – Р. 111241.

45. Competitive adsorption desulfurization performance over K–Doped NiY zeolite / H. Li et al // J. Colloid Interface Sci. – 2016. – № 483. – Р. 102-108.

46. Desulfurization kinetics and regeneration of silica gel-supported TiO2 extrudates for reactive adsorptive desulfurization of real diesel / L. Dong et al // Ind. Eng. Chem. Res. – 2020. – № 59. –Р. 10130-10141.

47. Ab initio screening of zeolite Y formulations for efficient adsorption of thiophene in presence of benzene / E.P. Hessou et al // Appl. Surf. Sci. – 2021. – № 541. – Р. 148515.

48. Song C. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization / C. Song, X. Ma // Appl. Catal. B Environ. – 2003. – № 41. Р. 207-238.

49. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: a study on adsorptive selectivity and mechanism / J.H. Kim et al // Catal. Today. – 2006. – № 111. – Р. 74-83.

50. On the mechanism of reactive adsorption of dibenzothiophene on organic waste derived carbons / C.O. Ania et al // Appl. Surf. Sci. – 2007. – № 253. – Р. 5899-5903.

51. A. FT-IR, study of the adsorption of indole, carbazole, benzothiophene, dibenzothiophene and 4, 6- dibenzothiophene over solid adsorbents and catalysts / M.A. Larrubia et al // Appl. Catal. A Gen. – 2002. – № 224. – Р. 167-178.

52. Adsorptive removal of thiophene and benzothiophene over zeolites from Mae Moh coal fly ash / C. Ngamcharussrivichai et al // Fuel. – 2008. – № 87. – Р. 2347.

53. Desulfurization by adsorption with copper supported on zirconia / P. Baeza et al // Catal. Commun. – 2008. – № 9. – Р. 751-755.

54. Evaluation of adsorptive desulfurization performance and economic applicability comparison of activated carbons prepared from various carbon sources / K. Chen et al // RSC Adv. – 2020. – № 10. – Р. 40329-40340.

55. Lee S.H.D. Sulfur removal from diesel fuel-contaminated methanol / S.H.D. Lee, R. Kumar, M. Krumpelt // Sep. Purif. Technol. – 2002. – № 26. – Р. 247-258.

56. Futuristic advance and perspective of deep eutectic solvent for extractive desulfurization of fuel oil: a review / M.F. Majid et al // J. Mol. Liq. – 2020. – № 306. – Р. 112870.

57. Ma X. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications / X. Ma, L. Sun, C.Song // Catal. Today. – 2002. – № 77. – Р. 107-116.

58. Deep-desulfurization of dibenzothiophene and its derivatives present in diesel oil by a newly isolated bacterium Achromobacter sp. to reduce the environmental pollution from fossil fuel combustion / N.K. Bordoloi et al // Fuel Process. Technol. – 2014. – № 119. – Р. 236-244.

59. A. Hirschler, C. Carapito, L. Maurer, J. Zumsteg, C. Villette, D. Heintz, C. Dahl, A. Al-Nayal, V. Sangal, H. Mahmoud, Biodesulfurization induces reprogramming of sulfur metabolism in Rhodococcusqingshengii IGTS8: proteomics and untargeted metabolomics / A. Hirschler et al // Microbiol. Spectr. – 2021. – № 9. – Р. e00692-21.

60. Analysis of biodesulfurization of model oil system by the bacterium, strain RIPI-22 / M. Rashtchi et al // Biochem. Eng. J. – 2006. – № 29. – Р. 169-173.

61. Kilbane J.J. Sulfur-specific microbial metabolism of organic compounds / J.J. Kilbane // Resour. Conserv. Recycl. – 1990. – № 3. – Р. 69-79.

62. Microbial desulfurization of coal and oil / J. Klein et al // Fuel Process. Technol. – 1994. – № 40. – Р. 297-310.

63. Klein J. Technological and economic aspects of coal biodesulfurisation / J. Klein // Biodegradation. – 1998. – № 9. – Р. 293-300.

64. Gallagher J.R. Microbial desulfurization of dibenzothiophene: a sulfur-specific pathway / J.R. Gallagher, E.S. Olson, D.C. Stanley // FEMS Microbiol. Lett. – 1993. – № 107. – Р. 31-35.

65. Biodesulfurization of hydrodesulfurized diesel oil with Pseudomonas delafieldii R-8 from high density culture / G. Shan et al // Biochem. Eng. J. – 2006. – № 27. – Р. 305-309.

66. Biodesulfurization: a mini review about the immediate search for the future technology / D. Boniek et al // Clean Technologies and Environmental Policy. – 2014. – № 17(1). – Р. 29-37. DOI: https://doi.org/10.1007/s10098-014-0812-x.

67. Enhanced oxidative desulfurization of model fuel: a comprehensive experimental study, South African / N. Kayedi et al // J. Chem.Eng. – 2021. – № 35. – Р. 153-158.

68. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment / A. Rajendran et al // J. Mater. Chem. – 2020. – № A 8. – Р. 2246-2285.

69. Oxidative processes of desulfurization of liquid fuels / J.M. Campos-Martin et al // J. Chem. Technol. Biotechnol. – 2010. – № 85. – Р. 879-890.

70. Poole C.F. Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ILs / C.F. Poole // J. Chromatogr. – 2004. – № A 1037. – Р. 49-82.

71. Babich I.V. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review / I.V. Babich, J.A. Moulijn // Fuel. – 2003. – № 82. – Р. 607-631.

72. Atilhan M. Review and perspectives for effective solutions to grand challenges of energy and fuels technologies via novel deep eutectic solvents / M. Atilhan, S. Aparicio // Energy Fuels. – 2021. – № 35. – Р. 6402-6419. DOI: https://doi.org/10.1021/acs.energyfuels.1c00303.

73. Abotsi G.M.K. A review of carbon-supported hydrodesulfurization catalysts / G.M.K. Abotsi, A.W. Scaroni // Fuel Process. Technol. – 1989. – № 22. – Р. 107-133.

74. Tam P.S. Desulfurization of fuel oil by oxidation and extraction. 2. Kinetic modeling of oxidation reaction / P.S. Tam, J.R. Kittrell, J.W. Eldridge // Ind. Eng. Chem. Res. – 1990. – № 29. – Р. 324-329.

75. Baxendale J.H. The kinetics of polymerisation reactions in aqueous solution / J.H. Baxendale, M.G. Evans, J.K. Kilham // Trans. Faraday Soc. – 1946. – № 42. – Р. 668-675.

76. Formation of the full SNARE complex eliminates interactions of its individual protein components with the Kv2.1 channel / S. Tsuk et al // Biochemistry. – 2008. – № 47. – Р. 8342-8349.

77. Lo W.-H. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ILs / W.-H. Lo, H.-Y. Yang, G.-T. Wei // Green Chem. – 2003. – № 5. – Р. 639-642.

78. Deep desulfurization of fuel oils using low-viscosity 1-ethyl-3-methylimidazolium dicyanamide ionic liquid / G. Yu et al // Ind. Eng. Chem. Res. – 2011. – № 50. – Р. 2236-2244.

79. A hierarchical hybrid method for screening ionic liquid solvents for extractions exemplified by the extractive desulfurization process / D. Peng et al // ACS Sustain. Chem. Eng. – 2021. – № 9. – Р. 2705-2716.

80. Deep oxidative desulfurization of diesel fuels by acidic ILs / G. Yu et al // Ind. Eng. Chem. Res. – 2011. – № 50. – Р. 11690-11697.

81. Catalytic kinetics of dibenzothiophene oxidation with the combined catalyst of quaternary ammonium bromide and phosphotungstic acid / D. Huang et al // Ind. Eng. Chem. Res. – 2007. – № 46. – Р. 6221-6227.

82. Deep oxidative desulfurization of fuels using peroxophosphomolybdate catalysts in ILs / L. He et al // Ind. Eng. Chem. Res. – 2008. – № 47. – Р. 6890-6895.

83. Kinetics and mechanism for oxidative desulfurization of fuels catalyzed by peroxo-molybdenum amino acid complexes in water-immiscible ILs / W. Zhu et al // J. Mol. Catal. A Chem. – 2011. – № 336. – Р. 16-22.

84. Ultra-deep oxidative desulfurization of fuel with H2O2 catalyzed by mesoporous silica-supported molybdenum oxide modified by Ce / Y. Chen et al // Appl. Sci. – 2021. – № 11. Р. 2018.

85. Catalytickinet ofoxidat desulfurizat with surfactant-type polyoxometalat-based ILs / W. Zhu et al // Fuel Process. Technol. – 2013. – № 106. – Р. 70-76.

86. Purifying of waste tire pyrolysis oil using an S- ZrO2/SBA-15-H2O2 catalytic oxidation method / M.N. Hossain et al // Catalysts. – 2020. – № 10. – Р. 368.

87. Ohshiro T. Enzymatic desulfurization of dibenzothiophene by a cell free system of Rhodococcus erythropolis D-1 / T. Ohshiro, Y. Hine, Y. Izumi // FEMS Microbiol Lett. – 1994. – № 118. – Р. 341-344.

88. Demonstration of the carbon–sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene / J. Konishi et al // FEMS Microbiol Lett. – 2000. – № 187. – Р. 151-154.

89. Biodesulfurization of hydrodesulfurized diesel oil with Pseudomonas delafieldii R-8 from high density culture / S. Guobin et al // Biochem Eng J. – 2006. – № 27. – Р. 305-309.

90. Soleimani M. Biodesulfurization of refractory organic sulfur compounds in fossil fuels / M. Soleimani, A. Bassi, A. Margaritis // Biotechnol Adv. – 2007. – № 25. – Р. 570-596.

91. Dibenzotiophene biodesulfurization in resting cell conditions by aerobic bacteria / A. Caro et al // Biochem Eng J. – 2007. – № 35. – Р. 191-197.

92. Alves L. Paixa˜o SM (2014b) Fructophilic behavior of Gordonia alkanivorans strain 1B during dibenzothiophene desulfurization process / L. Alves // N Biotechnol. – № 31(1). – Р. 73-79.

93. McFarland B. Biodesulfurization / B. McFarland // Curr Opin Microbiol. – 1999. – № 2. – Р. 257-264.

94. Alves L. Paixa˜o SM (2011) Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation / L. Alves // Bioresour Technol. – № 102. – Р. 9162-9166.

95. Roles of sulfite oxidoreductase and sulfite reductase in improving desulfurization by Rhodococcus erythropolis / S. Aggarwal et al // Mol BioSyst. – 2012. – № 8(10). – Р. 2724-2732.

96. Optimization of low sulfur carob pulp liquor as carbon source for fossil fuels biodesulfurization / T.P. Silva et al // J Chem Technol Biotechnol. – 2013. – № 88. – Р. 919-923.

97. In situ magnetic separation and immobilization of dibenzothiophene desulfurizing bacteria / Y-G. Li et al // Bioresour Technol. – 2009. – № 100. – Р. 5092-5096.

98. Enhancement of dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using sugar beet molasses as alternative carbon source / L. Alves // Appl Biochem and Biotechnol. DOI: https://doi.org/10.1007/s12010-014-0763-z.

99. Khan N. Quaternary ammonium salts-based deep eutectic solvents: utilization in extractive desulfurization / N. Khan, V.C. Srivastava // Energy Fuels. – 2021. – № 35. – Р. 12734-12745.

100. Insight into the mechanism of tuned extractive desulfurization by aqueous tetrabutylphosphonium bromide / H. Cheng et al // Sep. Purif. Technol. – 2021. – № 262. – Р. 118342.

101. Experimental study and mass transfer modelling for extractive desulfurization of diesel with ionic liquid in microreactors / N. Jin et al // Chem.Eng.J. – 2021. – № 413. – Р. 127419.

102. Fast oxidative desulfurization of fuel oil using dialkylpyridiniumtetrachloroferrates ILs / Y. Nie et al // Fuel. – 2013. – № 103. – Р. 997-1002.

103. Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques / M.F. Ali et al // Fuel. – 2006. – № 85. – Р. 1354-1363.

104. Meindersma G.W. Selection of ILs for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures / G.W. Meindersma, A.J.G. Podt, A.B. de Haan // Fuel Process. Technol. – 2005. – № 87. – Р. 59-70.

105. Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: Experimental design and optimization by central-composite design / Z.S. Gano et al // Chemical Engineering and Processing: Process Intensification. – 2015. – № 93. – Р. 10-20. DOI: https://doi.org/10.1016/j.cep.2015.04.001.

106. Natural deep eutectic solvents–solvents for the 21st century / A. Paiva et al // Chem. Eng. – 2014. – № 2. – Р. 1063-1071.

107. Insight into effective denitrification and desulfurization of liquid fuel with deep eutectic solvents: an innovative evaluation criterion to filtrate extractants using the compatibility index / Z. Li et al // Green Chem. – 2018. – № 20. – Р. 3112-3120.

108. Mako P. Deep eutectic solvents based highly efficient extractive desulfurization of fuels–Ecofriendly approach / P. Mako´s, G. Boczkaj // J. Mol. Liq. – 2019. – № 296. – Р. 111916.

109. Deep desulfurization of fuels: are deep eutectic solvents the alternative for ILs / F. Lima et al // Fuel. – 2021. – № 293. – Р. 120297.

110. Extractive desulfurization of fuel oils using deep eutectic solvents / A. Rashid et al // A comprehensive reviewJournal of Environmental Chemical Engineering. – 2022. – Vol. 10, Issue 3. – Р. 107369.

111. Glycerol eutectics as sustainable solvent systems / A.P. Abbott et al // Green Chem. – 2011. – № 13. – Р. 82-90.

112. Smith E.L. Deep eutectic solvents (DESs) and their applications / E.L. Smith, A.P. Abbott, K.S. Ryder // Chem. Rev. – 2014. – № 114. – Р. 11060-11082.

113. Unveiling the Hidden Performance of Whole Cells in the Asymmetric Bioreduction of Arylcontaining Ketones in Aqueous Deep Eutectic Solvents December 2016 Advanced Synthesis & Catalysis, 359(6)

114. Deep eutectic solvents: syntheses, properties and applications / Q. Zhang et al // Jerome, Chem. Soc. Rev. – 2012. – № 41. – Р. 7108-7146.

115. Extractive desulfurization of fuels using diglycol based deep eutectic solvents / D. Jha et al // J. Environ. Chem. Eng. – 2020. – № 8. – Р. 104182. DOI: https://doi.org/10.1016/j.jece.2020.104182.

116. Using deep eutectic solvents based on methyl triphenylphosphunium bromide for the removal of glycerol from palm-oil-based biodiesel / K. Shahbaz et al // Energy Fuels. – 2011. – № 25. – Р. 2671-2678.

117. Systematic investigation of the extractive desulfurization of fuel using deep eutectic solvents from multifarious aspects / H. Lee et al // Fuel. – 2020. – № 264. DOI: https://doi.org/10.1016/j.fuel.2019.116848.

118. Novel sustainable metal complex based deep eutectic solvents for extractive desulphurization of fuel / S.R. Shirazinia et al // J. Mol. Liq. – 2020. – № 301. – Р. 112364. DOI: https://doi.org/10.1016/j.molliq.2019.112364.

119. Unveilingstructurefunction relationships in deep eutectic solvents based biomimetic catalysis for aerobic oxidative desulfurization / Z. Zhu et al // Fuel. – 2022. – № 308. – Р. 122070. DOI: https://doi.org/10.1016/j.fuel.2021.122070.

120. Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from Sophora japonica / B.-Y. Zhao et al // ACS Sustain, Chem. Eng. – 2015. – № 3. – Р. 2746-2755.

121. An approach to classification and hitech applications of room-temperature ILs (RTILs): a review / F. Javed et al // J. Mol. Liq. – 2018. – № 271. – Р. 403-420.

122. A simple and costeffective extractive desulfurization process with novel deep eutectic solvents / X. Wang et al // RSC Adv. – 2016. – № 6. – Р. 30345-30352.

123. Deng, Deep extractive desulfurization with arenium ion deep eutectic solvents / X. Tang et al // Ind. Eng. Chem. Res. – 2015. – № 54. – Р. 4625-4632.

124. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents / C. Li et al // Green Chem. – 2013. – № 15. – Р. 2793-2799.


Рецензия

Для цитирования:


Керимкулова А.Ж., Рафикова Х.С., Булатова Н.Б., Абдирафиева Д.О., Дариджан М.Е. ЭКСТРАКЦИОННАЯ СЕРООЧИСТКА НЕФТЯНОГО ТОПЛИВА С ИСПОЛЬЗОВАНИЕМ ГЛУБОКОЭВТЕКТИЧЕСКИХ РАСТВОРИТЕЛЕЙ. Вестник Университета Шакарима. Серия технические науки. 2024;1(2(14)):481-495. https://doi.org/10.53360/2788-7995-2024-2(14)-58

For citation:


Kerimkulova A.Zh., Rafikova Kh.S., Bulatova N.B., Abdirafiyeva D.O., Daridzhan M.E. EXTRACTIVE DESULFURIZATIONOF PETROLEUM FUEL USING DEEP-EUTECTIC SOLVENTS. Bulletin of Shakarim University. Technical Sciences. 2024;1(2(14)):481-495. (In Russ.) https://doi.org/10.53360/2788-7995-2024-2(14)-58

Просмотров: 176


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X