Preview

Bulletin of Shakarim University. Technical Sciences

Advanced search

Properties and applications of keratin from the waste of animal-farming (review article)

https://doi.org/10.53360/2788-7995-2023-4(12)-23

Abstract

The study aims to provide a modern overview of the properties of keratin-containing raw materials from animal waste among the research scientists over the past decades and to show the important role of keratin in science. This review examines the composition and types of keratin, the scope of application, the functions of keratin, distribution in animal husbandry and fish farming, as well as in mammals. It is important to note that keratin is widely used in biomedicine, tissue engineering, bioplastics, textiles, biocomposites in construction and building materials. This article reveals the physical and chemical properties and advantages of keratin, such as biodegradability, mechanical abilities, resistance to temperature conditions and thermal conductivity. Keratin can be synthesized from different raw materials, such as wool, hair, bird feathers, using different methods. The extraction method can be of several types: oxidative and reducing, as well as extraction by steam explosion. Extracted keratin has generated increased interest for its study and research for medical purposes, or rather the first innovative discoveries were made among cosmetics, coatings for medicines and fibers. Keratin extracted from animal waste represents a promising active biomolecule for biological and biomaterial applications. The exceptional properties that keratin transmits by virtue of its nature open up the possibility of replacing synthetic materials with biomaterials more compatible with humans and biodegradable, which can improve the overall economy of the closed cycle of agro-industrial complexes. 

About the Authors

M. D. Sultan
Al-Farabi Kazakh National University
Kazakhstan

Meruyert Sultan – PhD student of the Department of Analytical, Colloid Chemistry and Technology of Rare Elements

050040,  Almaty, 71 Al-Farabi Avenue



Zh. B. Ospanova
Al-Farabi Kazakh National University

Zhanar Ospanova – Deputy Head of the Department for Scientific and Innovative Work and International relations.connections, Associate Professor of Department of Analytical, Colloid Chemistry and Technology of Rare Elements

050040,  Almaty, 71 Al-Farabi Avenue



K. B. Musabekov
Al-Farabi Kazakh National University

Kuanyshbek Musabekov – Professor of the Department of Analytical, Colloid Chemistry and Technology of Rare Elements

050040,  Almaty, 71 Al-Farabi Avenue



T. E. Kenzhebaev
LLP «Kazakh research institute of livestock and fodder production»

Temirkhan Kenzhebaev – Senior Researcher in the sector of production of fine-wool sheep products

050035, Almaty, 51 Zhandosov street



P. Takhistov
Rutgers, The State University of New Jersey
United States

Paul Takhistov – Associate Professor of Food Engineering at the Department of Food Science, PhD

08901 NJ,  New Brunswick, 65 Dudley Road



References

1. Goud V. Keratin Based Bio-composites-A Review. – Asian Text. J. – Vol. 20. – P. 77. – Jun. 2011.

2. Nachionalnaya palata predprinimatelei Respubliki Kazakhstan "Atameken" (2022). Kazakhstanskaya sherst uhodit za bescenok. URL: https://atameken.kz/ru/news/47701- kazahstanskaya-sherst-uhodit-za-bescenok.

3. Ahmad A., Othman I., Tardy B.L., Hasan S.W., Banat F. Enhanced lactic acid production with indigenous microbiota from date pulp waste and keratin protein hydrolysate from chicken feather waste / Bioresour. Technol. Rep. – Vol. 18. – P. 101089. – Jun. 2022, doi: 10.1016/j.biteb.2022.101089.

4. Hu X., Cebe P., Weiss A.S., Omenetto F., Kaplan D. L. Protein-based compositematerials. – Mater. Today. – Vol. 15, iss. 5. – P. 208-215. – May 2012, doi: 10.1016/S1369-7021(12)70091-3.

5. Qiu J., Wilkens C., Barrett K., Meyer A.S. Microbial enzymes catalyzing keratin degradation: Classification, structure, function // Biotechnol. Adv. – Vol. 44. – P. 107607. – Nov. 2020, doi: 10.1016/j.biotechadv.2020.107607.

6. Ferraro V., Anton M., Santé-Lhoutellier V. The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application // Trends Food Sci. Technol. – Vol. 51. – P. 65-75. – May 2016, doi: 10.1016/j.tifs.2016.03.006.

7. Esparza Y., Bandara N., Ullah A., Wu J. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins // Mater. Sci. Eng. – C, Vol. 90. – P. 446-453. – Sep. – 2018, doi: 10.1016/j.msec.2018.04.067.

8. Ranjit E., Hamlet S., George R., Sharma A., Love R. M. Biofunctional approaches of woolbased keratin for tissue engineering // J. Sci. Adv. Mater. Devices. – Vol. 7, iss. 1. – P. 100398. – Mar. 2022, doi: 10.1016/j.jsamd.2021.10.001.

9. Lazarus B.S., Chadha C., Velasco-Hogan A., Barbosa J.D.V., Jasiuk I., Meyers M.A. Engineering with keratin: A functional material and a source of bioinspiration // iScience. – Vol. 24, iss. 8, – P. 102798. – Aug. 2021, doi: 10.1016/j.isci.2021.102798.

10. Shibuya K., Tsutsui S., Nakamura O. Fugu, Takifugu ruberipes, mucus keratins act as defense molecules against fungi // Mol. Immunol. – Vol. 116, – P. 1-10. – Dec. 2019. doi: 10.1016/j.molimm.2019.09.012.

11. Sun C. et al. Photopolymerized keratin-PGLa hydrogels for antibiotic resistance reversal and enhancement of infectious wound healing // Mater. Today Bio. – Vol. 23. – P. 100807. – Dec. 2023, doi: 10.1016/j.mtbio.2023.100807.

12. W. Huang et al. A natural energy absorbent polymer composite: The equine hoof wall» // Acta Biomater. – Vol. 90. – P. 267-277. – May 2019, doi: 10.1016/j.actbio.2019.04.003.

13. Sarma A. Biological importance and pharmaceutical significance of keratin: A review // Int. J. Biol. Macromol. – Vol. 219. – P. 395-413. – Oct. 2022, doi: 10.1016/j.ijbiomac.2022.08.002.

14. Ye W., Qin M., Qiu R., Li J. Keratin-based wound dressings: From waste to wealth // Int. J. Biol. Macromol. – Vol. 211. – P. 183-197. – Jun. 2022, doi: 10.1016/j.ijbiomac.2022.04.216.

15. Qin X. et al. A sustainable and efficient recycling strategy of feather waste into keratin peptides with antimicrobial activity» // Waste Manag. – Vol. 144. – P. 421-430. – May 2022, doi: 10.1016/j.wasman.2022.04.017.

16. Shen Q., Ma Y., Qin X., Guo Y., Zhang C. Steam explosion as a green method to treat animal waste: A mini-review // Process Saf. Environ. Prot. – Vol. 181. – P. 43-52. – Jan. 2024, doi: 10.1016/j.psep.2023.11.012.

17. Qin X. et al. Effect of ultrasound on keratin valorization from chicken feather waste: Process optimization and keratin characterization // Ultrason. Sonochem. – Vol. 93. – P. 106297. – Feb. 2023, doi: 10.1016/j.ultsonch.2023.106297.

18. Li X., Guo Z., Li J., Yang M., Yao S. Swelling and microwave-assisted hydrolysis of animal keratin in ionic liquids // J. Mol. Liq. – Vol. 341. – P. 117306. – Nov. 2021, doi: 10.1016/j.molliq.2021.117306.

19. Dias G.J., Haththotuwa T.N., Rowlands D.S., Gram M., Bekhit A.E.-D.A. Wool keratin – A novel dietary protein source: Nutritional value and toxicological assessment // Food Chem. – Vol. 383. – P. 132436. – Jun. 2022, doi: 10.1016/j.foodchem.2022.132436.

20. Zhou J., Li D., Zhang X., Liu C., Chen Y. Valorization of protein-rich waste and its application // Sci. Total Environ. – Vol. 901. – P. 166141, Nov. – 2023, doi: 10.1016/j.scitotenv.2023.166141.

21. Pakdel M., Moosavi-Nejad Z., Kermanshahi R.K., Hosano H. Self-assembled uniform keratin nanoparticles as building blocks for nanofibrils and nanolayers derived from industrial feather waste // J. Clean. Prod. – Vol. 335. – P. 130331. – Feb. 2022, doi: 10.1016/j.jclepro.2021.130331.

22. Mohamed J.M. et al. Human Hair Keratin Composite Scaffold: Characterisation and Biocompatibility Study on NIH 3T3 Fibroblast Cells // Pharmaceuticals. – Vol. 14. – iss. 8. – 2021, doi: 10.3390/ph14080781.

23. Sadeghi S., Nourmohammadi J., Ghaee A., Soleimani N. Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing // Int. J. Biol. Macromol. – Vol. 147. – P. 1239-1247. – Mar. 2020, doi: 10.1016/j.ijbiomac.2019.09.251.

24. Fadeyibi A. Chapter 11 – Production of smart packaging from sustainable materials // Green Sustainable Process for Chemical and Environmental Engineering and Science, Inamuddin, T. Altalhi, J. Neves Cruz, edit., Elsevier. – 2023. – P. 185-196. doi: 10.1016/B978-0-323-95644-4.00006-1.

25. Thakur R. et al. Characteristics and application of animal byproduct-based films and coatings in the packaging of food products // Trends Food Sci. Technol. – Vol. 140. – P. 104143. – Oct. 2023, doi: 10.1016/j.tifs.2023.104143.


Review

For citations:


Sultan M.D., Ospanova Zh.B., Musabekov K.B., Kenzhebaev T.E., Takhistov P. Properties and applications of keratin from the waste of animal-farming (review article). Bulletin of Shakarim University. Technical Sciences. 2023;1(4(12)):184-194. (In Kazakh) https://doi.org/10.53360/2788-7995-2023-4(12)-23

Views: 266


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X