Preview

Bulletin of Shakarim University. Technical Sciences

Advanced search

Investigation of the process of formation of a chemical current source in the «red-ox» Fe(II) – Fe(III) system in a sulfuric acid environment

https://doi.org/10.53360/2788-7995-2023-4(12)-24

Abstract

Among the technologies designed to save energy, flow-through batteries deserve special attention. Their principle of operation is based on the use of systems of variably valent ions. The aim of the work is to create a chemical current source based on the use of the "red – ox" Fe(II)/Fe(III) system and to determine the patterns of formation of electromotive force (EMF) and short-circuit current (SCC) in acidic solutions depending on the concentration of ions. The experiments are carried out by measuring the EMF formed between graphite electrodes and SCC. A special installation has been assembled, consisting of an electrolyzer with separated electrode spaces, an ammeter, a voltmeter and graphite electrodes. Acidified solutions of iron (II) and iron (III) sulfates served as the electrolyte. In an electrolyzer, the electrode spaces of which are separated by an anionite membrane, when one space is filled with iron (II) sulfate and the other with iron (III) sulfate, an EMF occurs between graphite electrodes. When making contact between graphite electrodes, iron (II) oxidation occurs in the first electrode space, and iron (III) reduction occurs in the second. A chemical current source is being formed. At a concentration of iron (III) equal to 20 g/l, a change in the concentration of iron (II) in the range of 1-40 g / l contributes to a shift in the potential of the graphite electrode to negative values. At a concentration of Fe(III) equal to 1 g/l, the potential value is 509 mV, and at 40 g / l – 475 mV. At a constant concentration of iron (II), the addition of Fe(III) leads to a shift in the EMF value to the right. It was found that as a result of these changes, an increase in EMF and SCC is observed. 

About the Authors

U. Oraz
Al-Farabi Kazakh National University

Ulzhan Oraz – Master, PhD-student

050040 , Almaty, 71 Al-Farabi Avenue



A. Bayeshova
Al-Farabi Kazakh National University
Kazakhstan

Azhar Bayeshova – Doctor of Technical Sciences, Professor

050040 , Almaty, 71 Al-Farabi Avenue



A. Bayeshov
«D.V.Sokolsky Institute of fuel, catalysis and electrochemistry» JSC

Abduali Bayeshov – Doctor of Chemical Science, Professor, Academician of the National Academy of Sciences of the Republic Kazakhstan

050000 , Almaty, 132 Konaev st.



References

1. Abramova D.A., Dubcov N.D., Petrova S.E. Avtonomnye istochniki jenergii // Himicheskie istochniki toka. Luchshaja issledovatel'skaja stat'ja 2023 / Sbornik statej, 2023, 7. https://naukaip.ru/wp-content/uploads/2023/01/K-448.pdf#page=7.

2. Ang T.Z. et al. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions // Energy Strategy Reviews. – 2022. – Т. 43. – С. 100939. https://www.sciencedirect.com/science/article/pii/S2211467X2200133X.

3. Mossali E. et al. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments // Journal of environmental management. – 2020. – Т. 264. – С. 110500. https://www.sciencedirect.com/science/article/pii/S0301479720304345.

4. Armand M. et al. Lithium-ion batteries – Current state of the art and anticipated developments // Journal of Power Sources. – 2020. – Т. 479. – С. 228708. https://www.sciencedirect.com/ science/article/abs/pii/S0378775320310120.

5. Nizhnikovskij E. Perspektivy ispol'zovanija himicheskih istochnikov toka dlja jelektropitanija avtonomnoj radiojelektronnoj apparatury // Sovremennaja jelektronika. – 2010. – № 2. – С. 12. https://www.soel.ru/upload/clouds/1/iblock/522/52251ebb9d235ea922132b35e71d7de8/20100201 2.pdf.

6. Zhu P. et al. A review of current collectors for lithium-ion batteries // Journal of Power Sources. – 2021. – Т. 485. – С. 229321. https://www.sciencedirect.com/science/article/abs/pii/ S0378775320316098.

7. Godjaeva M.V., Voronkov D.E., Kazarinov I.A. Protochnye redoks-batarei na osnove organicheskih veshhestv dlja nakoplenija jelektricheskoj jenergii. – 2020. https://scholar.google.com/scholar?start=20&q=%D1%85%D0%B8%D0%BD%D0%BE%D0%BD+ &hl=ru&as_sdt=0,5&as_ylo=2019.

8. Petrov M.M. i dr. Protochnye redoks-batarei: mesto v sovremennoj strukture jelektrojenergetiki i sravnitel'nye harakteristiki osnovnyh tipov // Uspehi himii. – 2021. – T. 90, № 6. – 677-702. https://www.uspkhim.ru/RCR4987pdf.

9. Godjaeva M.V. i dr. Protochnye batarei na osnove organicheskih redoks-sistem dlja krupnomasshtabnogo hranenija jelektricheskoj jenergii // Jelektrohimicheskaja jenergetika. – 2021. – T 21, № 2,. – 59-85. https://cyberleninka.ru/article/n/protochnye-batarei-na-osnove-organicheskihredoks-sistem-dlya-krupnomasshtabnogo-hraneniya-elektricheskoy-energii

10. Goulet M.A. et al. Extending the lifetime of organic flow batteries via redox state management // Journal of the American Chemical Society. – 2019. – Т. 141, №. 20. – С. 8014-8019. https://pubs.acs.org/doi/abs/10.1021/jacs.8b13295

11. Kravchenko E.V. Obzor sovremennyh tehnologij nakoplenija jenergii. Kompetentnost', 2023, № 1, 33-38. https://cyberleninka.ru/article/n/obzor-sovremennyh-tehnologiy-nakopleniya-energii

12. Fialkov A.S. Uglerod v himicheskih istochnikah toka. Jelektrohimija. – 2000. – T. 36, № 4. – 389- 413. https://www.elibrary.ru/item.asp?id=44689612


Review

For citations:


Oraz U., Bayeshova A., Bayeshov A. Investigation of the process of formation of a chemical current source in the «red-ox» Fe(II) – Fe(III) system in a sulfuric acid environment. Bulletin of Shakarim University. Technical Sciences. 2023;1(4(12)):195-203. (In Kazakh) https://doi.org/10.53360/2788-7995-2023-4(12)-24

Views: 193


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X