FABRICATION OF 3D POROUS PHOTOCATALYST BASED ON TIO2 AND CO3O4 NANOPOWDERS FOR HYDROGEN PRODUCTION APPLICATION
Abstract
Cobalt titanate (CoTiO3) is one of the promising candidates for visible-light-driven photocatalytic water oxidation. In this research, the formation of multilayered 3D porous structures was performed by mixing Co3O4 and TiO2 nanopowders with adding pore-forming agents and further calcination. Different crystallite sizes of porous CoTiO3 were produced by varying the calcination temperature. The fabricated 3D porous CoTiO3 were characterized using XRD, SEM, BET, optical measuring technique. The crystallite size increases with increasing the calcination temperature within the range of 600-800°C. The photocatalytic activity of 3D porous CoTiO3 was studied by measuring the rate of H2 evolution during the splitting in 0.5M KOH aqueous solution electrolyte under 300 mW/cm2 xenon lamp irradiation
About the Authors
A. MerekeKazakhstan
A. Umirzakov
Kazakhstan
R. Beisenov
Kazakhstan
B. Rakhmetov
Kazakhstan
References
1. Saxena RC, Seal D, Kumar S, Goyal HB. Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renew Sustain Energy Rev – 2008. – № 12. – p.1909-1927.
2. Rapagna S, Jand N, Foscolo PU. Catalytic gasification of biomass to produce hydrogen rich gas. Int J Hydrogen Energy – 1998. – V.23(7). – p.551-557.
3. Iwasaki W. A consideration of the economic efficiency of hydrogen production from biomass. Int J Hydrogen Energy – 2003. – V.28(9). – p.939- 944.
4. Zou Z, Ye J, Sayama K, Arakawa H. Photocatalytic hydrogen and oxygen formation under visible light irradiation with Mi doped InTaO4 (M ¼ Mn, Fe, Co, Ni and Cu) photocatalysts. J Photochem Photobiol A Chem. – 2002. –V.148(1) – p.65-69.
5. W. Adamson, X. Bo, Y. Li, B.H.R. Suryanto, X. Chen, C. Zhao, Co-Fe binary metal oxide electrocatalyst with synergistic interface structures for efficient overall water splitting, Catal. Today. - 2019. https://doi.org/10.1016/j.cattod.2019.01.060.
6. F. He, Z. Wang, Y. Li, S. Peng, B. Liu, The nonmetal modulation of composition and morphology of gC3N4-based photocatalysts, Appl. Catal. B Environ. – 2020. – https://doi.org/10.1016/j.apcatb.2020.118828.
7. M. Yang, T. Feng, Y. Chen, J. Liu, X. Zhao, B. Yang, Synchronously integration of Co, Fe dual-metal doping in Ru@C and CDs for boosted water splitting performances in alkaline media, Appl. Catal. B Environ. – 2020. – https://doi.org/10.1016/j.apcatb.2020.118657.
8. E.L. Tsege, T.Sh. Atabaev, Md.A. Hossain, D. Lee, H.-K. Kim, Y.-H. Hwang, Cu-doped flower-like hematite nanostructures for efficient water splitting applications, J. Phys. Chem. Solids. – 2016 – p.283-289.
9. T. Liu, M. Li, X. Bo, M. Zhou, Designing transition metal alloy nanoparticles embedded hierarchically porous carbon nanosheets as high-efficiency electrocatalysts toward full water splitting, J. Colloid Interface Sci. – 2019. – V.537 – p.280–294.
10. A. Majeed, X. Li, P.-X. Hou, H. Tabassum, L. Zhang, C. Liu, H.-M. Cheng, Monolayer carbonencapsulated Mo-doped Ni nanoparticles anchored on single-wall carbon nanotube film for total water splitting, Appl. Catal. B Environ. 2020 – V.269 – p.118823.
11. L. Yang, H. Li, Y. Yu, Y. Wu, L. Zhang, Assembled 3D MOF on 2D Nanosheets for Self-boosting Catalytic Synthesis of N-doped Carbon Nanotube Encapsulated Metallic Co Electrocatalysts for Overall Water Splitting, Appl. Catal. B Environ. – 2020. – V.271 –p.118939.
12. C. Yu, K. Yang, W. Zhou, Q. Fan, L. Wei, J.C. Yu, Preparation, characterization and photocatalytic performance of noble metals (Ag, Pd, Pt, Rh) deposited on sponge-like ZnO microcuboids, J. Phys. Chem. Solids. –2013. – V.74 – p.1714–1720.
13. M. Solakidou, A. Giannakas, Y. Georgiou, N. Boukos, M. Louloudi, Y. Deligiannakis, Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N,F-TiO2: Interplay between CdS photo corrosion and TiO2-dopping, Appl. Catal. B Environ. – 2019. – V.254 194–205.
14. R.V. Digraskar, S.M. Mali, S.B. Tayade, A.V. Ghule, B.R. Sathe, Overall noble metal free Ni and Fe doped Cu2ZnSnS4 (CZTS) bifunctional electrocatalytic systems for enhanced water splitting reactions, Int. J. Hydrog. Energy. -2019. - V.44 – p.8144–8155.
15. D. Li, Z. Liu, J. Wang, B. Liu, Y. Qin, W. Yang, J. Liu, Hierarchical trimetallic sulfide FeCo2S4–NiCo2S4 nanosheet arrays supported on a Ti mesh: An efficient 3D bifunctional electrocatalyst for full water splitting, Electrochimica Acta. – 2020. –V.340 – p.135957.
16. Abe R, Higashi M, Sayama K, Abe Y, Sugihara H. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3 /I_. J Phys Chem B – 2005. – V.109. – p.16052 - 16061.
17. T. Montini, et al., Materials Science in Semiconductor Processing – 2015. – http://dx.doi.org/10.1016/j.mssp.2015.06.069
18. T. Acharya, R.N.P. Choudhary, J. Alloy. Compd. – 2019 –V.788 – p.495–505.
19. Q. Wang, Q. Guo, L. Wang, B. Li, Dalton Trans. – 2016. – V.45 (44) – p.17748–17758
20. J. Tauc, R. Grigorovici, A. Vancu, phys. status solidi – 1966 – https://doi.org/10.1002/pssb.19660150224.
21. A. Kudo, A. Tanaka, K. Domen, T. Onishi, The effects of the calcination temperature of SrTiO3 powder on photocatalytic activities, J. Catal. – 1988. – V.111 – p.296–301.
Review
For citations:
Mereke A., Umirzakov A., Beisenov R., Rakhmetov B. FABRICATION OF 3D POROUS PHOTOCATALYST BASED ON TIO2 AND CO3O4 NANOPOWDERS FOR HYDROGEN PRODUCTION APPLICATION. Bulletin of Shakarim University. Technical Sciences. 2020;(3(91)):137-143. (In Russ.)