Preview

Вестник Университета Шакарима. Серия технические науки

Расширенный поиск

АНАЛИЗ ВАРИАБЕЛЬНОСТИ СЕРДЕЧНОГО РИТМА НА ОСНОВЕ ФОТОПЛЕТИЗМОГРАФИИ С ПРИМЕНЕНИЕМ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ ДЛЯ НЕИНВАЗИВНОГО СКРИНИНГА ИШЕМИЧЕСКОЙ БОЛЕЗНИ СЕРДЦА С ИСПОЛЬЗОВАНИЕМ УСТРОЙСТВА ZHUREK IOT

https://doi.org/10.53360/2788-7995-2025-4(20)-27

Аннотация

Сердечно-сосудистые заболевания являются основной причиной смертности в мире, поэтому на ранних этапах неинвазивная оценка риска имеет важное значение как для профилактики, так и для эффективного распределения ресурсов здравоохранения. Вариабельность сердечного ритма (ВСР) является надежным показателем вегетативного баланса, однако в клинической практике до сих пор преимущественно используются длительные ЭКГ-записи, что ограничивает широкое применение. Несмотря на широкое распространение фотоплетизмографии (ФПГ), эффективность метрик ВСР, полученных из ФПГ, для выявления ишемической болезни сердца (ИБС) до конца не определена.
В данном исследовании ФПГ-сигналы, полученные с помощью недорогого устройства Zhurek, в сочетании с классификаторами машинного обучения позволили выявлять ИБС с точностью 90,82%. В сравнении с трехканальной холтеровской ЭКГ наблюдалось удовлетворительное согласие. Анализ SHAP и взаимной информации показал ключевую роль частотных показателей (HF, LF). Метод балансировки CTGAN повысил устойчивость обучения.
Полученные результаты подтверждают, что использование ФПГ может стать доступным и интерпретируемым способом скрининга ИБС. Следующие шаги – многоцентровые исследования, расширение набора признаков и внедрение методики в носимые устройства.

Об авторах

Ж. Е. Байғараева
Казахский национальный университет имени Аль-Фараби; ТОО «Kazakhstan R&D Solutions»
Казахстан

Жанель Ермашқызы Байғараева – магистр

050040, Казахстан, Алматы, проспект Аль-Фараби 71

050056, Казахстан, Алматы, улица Кожедуба 3



А. К. Болтабоева
Казахский национальный университет имени Аль-Фараби; ТОО «Kazakhstan R&D Solutions»
Казахстан

Асия Кубланди кызи Болтабоева – магистр, PhD студентка 3 курса

050040, Казахстан, Алматы, проспект Аль-Фараби 71

050056, Казахстан, Алматы, улица Кожедуба 3



Б. Т. Иманбек
Казахский национальный университет имени Аль-Фараби
Казахстан

Бағлан Талғатқызы Иманбек – PhD, доцент, профессор-исследователь

050040, Казахстан, Алматы, проспект Аль-Фараби 71



М. И. Кожамбердиева
Казахский национальный университет имени Аль-Фараби; ТОО «Kazakhstan R&D Solutions»
Казахстан

Мергул Иманбековна Кожамбердиева – кандидат педогогических наук

050040, Казахстан, Алматы, проспект Аль-Фараби 71

050056, Казахстан, Алматы, улица Кожедуба 3



А. Б. Бектурганова
Казахский национальный университет имени Аль-Фараби; ТОО «Kazakhstan R&D Solutions»
Казахстан

Айман Болатовна Бектурганова – бакалавр студентка 4 курса

050040, Казахстан, Алматы, проспект Аль-Фараби 71

050056, Казахстан, Алматы, улица Кожедуба 3



Список литературы

1. World Health Organization. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds (accessed on 11 June 2024).

2. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study / M.A. Khan et al // Cureus. – 2020. – № 12. – Р. e9349. https://doi.org/10.7759/cureus.9349.

3. Tengrinews.kz. The Most Common Disease among Kazakhstanis Has Been Named. Available online: https://tengrinews.kz/kazakhstan_news/nazvana-samaya-rasprostranennaya-bolezn-sredikazahstantsev-503527/ (accessed on 18 October 2022).

4. Smoking, Drinking, Diet and Physical Activity – Modifiable Lifestyle Risk Factors and Their Associations with Age to First Chronic Disease / R. Ng et al // Int. J. Epidemiol. – 2020. – № 49. – Р. 113-130. https://doi.org/10.1093/ije/dyz078.

5. Enhancing Comprehensive Assessments in Chronic Heart Failure Caused by Ischemic Heart Disease: The Diagnostic Utility of Holter ECG Parameters / Ș.-T. Duca et al // Medicina. – 2024. – № 60. – Р. 1315. https://doi.org/10.3390/medicina60081315.

6. Heart Rate Variability and Myocardial Infarction: Systematic Literature Review and Metanalysis / F. Buccelletti et al // Eur. Rev. Med. Pharmacol. Sci. – 2009. – № 13. – Р. 299-307.

7. Short-Term vs. Long-Term Heart Rate Variability in Ischemic Cardiomyopathy Risk Stratification / A. Voss et al // Front. Physiol. – 2013. – № 4. – Р. 364. https://doi.org/10.3389/fphys.2013.00364.

8. Advances in Photoplethysmography Signal Analysis for Biomedical Applications / J.L. Moraes et al // Sensors. – 2018. – № 18. – Р. 1894. https://doi.org/10.3390/s18061894.

9. The Use of Photoplethysmography for Assessing Hypertension / М. Elgendi et al // npj Digit. Med. – 2019. – № 2. – Р. 60. https://doi.org/10.1038/s41746-019-0136-7.

10. Diagnostic Features and Potential Applications of PPG Signal in Healthcare: A Systematic Review / М.А. Almarshad et al // Healthcare. – 2022. – № 10. – Р. 547. https://doi.org/10.3390/healthcare10030547.

11. Kim K.B. Photoplethysmography in Wearable Devices: A Comprehensive Review of Technological Advances, Current Challenges, and Future Directions / K.B. Kim, H.J. Baek // Electronics. – 2023. – № 12. – Р. 2923. https://doi.org/10.3390/electronics12132923.

12. Survey: Smartphone-Based Assessment of Cardiovascular Diseases Using ECG and PPG Analysis / М. Shabaan et al // BMC Med. Inform. Decis. Mak. – 2020. – № 20. – Р. 177. https://doi.org/10.1186/s12911-020-01199-7.

13. Cardiovascular Disease Risk Prediction Using Automated Machine Learning: A Prospective Study of 423,604 UK Biobank Participants / А.М. Alaa et al // M. PLoS ONE. – 2019. – № 14. – Р. e0213653. https://doi.org/10.1371/journal.pone.0213653.

14. Exploring Relationships of Heart Rate Variability, Neurological Function, and Clinical Factors with Mortality and Behavioral Functional Outcome in Patients with Ischemic Stroke / M.-J. Wu et al // Diagnostics. – 2024. – № 14. – Р. 1304. https://doi.org/10.3390/diagnostics14121304.

15. Heart Rate Variability in Acute Myocardial Infarction: Results of the HeaRt-V-AMI Single-Center Cohort Study / С. Brinza et al // J. Cardiovasc. Dev. Dis. – 2024. – № 11. – Р. 254. https://doi.org/10.3390/jcdd11080254.

16. A Novel Wearable Device for Continuous Ambulatory ECG Recording: Proof of Concept and Assessment of Signal Quality / С. Steinberg et al // Biosensors. – 2019. – № 9. – Р. 17. https://doi.org/10.3390/bios9010017.

17. Holter ECG for Syncope Evaluation in the Internal Medicine Department—Choosing the Right Patients / О. Freund et al // J. Clin. Med. – 2022. – № 11. – Р. 4781. https://doi.org/10.3390/jcm11164781.

18. Self-Reporting Technique-Based Clinical-Trial Service Platform for Real-Time Arrhythmia Detection / Н. Kim et al // Appl. Sci. – 2022. – № 12. – Р. 4558. https://doi.org/10.3390/app12094558.

19. Heart Disease Diagnosis and Prediction Using Machine Learning and Data Mining Techniques: A Review / А. Hazra et al // Adv. Comput. Sci. Technol. – 2017. – № 10. – Р. 2137-2159.

20. Automated Detection of Coronary Artery Disease, Myocardial Infarction and Congestive Heart Failure Using GaborCNN Model with ECG Signals / V. Jahmunah et al // Comput. Biol. Med. – 2021. – № 134. – Р. 104457. https://doi.org/10.1016/j.compbiomed.2021.104457.

21. Trigka M. Long-Term Coronary Artery Disease Risk Prediction with Machine Learning Models / M. Trigka, E. Dritsas // Sensors. – 2023. – № 23. – Р. 1193. https://doi.org/10.3390/s23031193.

22. Roerecke M. Alcohol Consumption, Drinking Patterns, and Ischemic Heart Disease: A Narrative Review of Meta-Analyses and a Systematic Review and Meta-Analysis of the Impact of Heavy Drinking Occasions on Risk for Moderate Drinkers / M. Roerecke, J. Rehm // BMC Med. – 2014. – № 12. – Р. 182. https://doi.org/10.1186/s12916-014-0182-6.

23. Comparative Analysis of the Diagnostic Effectiveness of SATRO ECG in the Diagnosis of Ischemia Diagnosed in Myocardial Perfusion Scintigraphy Performed Using the SPECT Method / Ł.J. Janicki et al // Diagnostics. – 2022. – № 12. – Р. 297. https://doi.org/10.3390/diagnostics12020297.

24. Prognostic Role of Electrocardiographic Alternans in Ischemic Heart Disease / I. Marcantoni et al // J. Clin. Med. – 2025. – № 14. – Р. 2620. https://doi.org/10.3390/jcm14082620.

25. Exploring Relationships of Heart Rate Variability, Neurological Function, and Clinical Factors with Mortality and Behavioral Functional Outcome in Patients with Ischemic Stroke / M.-J. Wu et al // Diagnostics. – 2024. – № 14. – Р. 1304. https://doi.org/10.3390/diagnostics14121304.

26. The Influence of Physiological Noise Correction on Test–Retest Reliability of Resting-State Functional Connectivity / R.M. Birn et al // Brain Connect. – 2014. – № 4. – Р. 511-522. https://doi.org/10.1089/brain.2014.0284.

27. Reliability of Resting Metabolic Rate Measurements in Young Adults: Impact of Methods for Data Analysis / Y. Sanchez-Delgado et al // Clin. Nutr. – 2018. – № 37. – Р. 1618-1624. https://doi.org/10.1016/j.clnu.2017.07.026.

28. McDuff D. Remote Measurement of Cognitive Stress via Heart Rate Variability / D. McDuff, S. Gontarek, R. Picard // In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA. – 2014. – № 26-30. – Р. 2957-2960. https://doi.org/10.1109/EMBC.2014.6944243.

29. Validity of Ultra-Short-Term HRV Analysis Using PPG – A Preliminary Study / А. Taoum et al // Sensors. – 2022. – № 22. – Р. 7995. https://doi.org/10.3390/s22207995.

30. Accuracy of Heart Rate Variability Estimated with Reflective Wrist-PPG in Elderly Vascular Patients / С. Hoog Antink et al // Sci. Rep. – 2021. – № 11. – Р. 8123. https://doi.org/10.1038/s41598-021-87489-0.

31. Eom G. Searching for Optimal Oversampling to Process Imbalanced Data: Generative Adversarial Networks and Synthetic Minority Over-Sampling Technique / G. Eom, H. Byeon // Mathematics. – 2023. – № 11. – Р. 3605. https://doi.org/10.3390/math11163605.

32. Adiputra I.N.M. CTGAN-ENN: A Tabular GAN-Based Hybrid Sampling Method for Imbalanced and Overlapped Data in Customer Churn Prediction / I.N.M. Adiputra, P. Wanchai // J. Big Data. – 2024. – № 11. – Р. 121. https://doi.org/10.1186/s40537-024-00982-x.

33. Relationship Between Heart Rate Variability Traits and Stroke: A Mendelian Randomization Study / W. Liu et al // J. Stroke Cerebrovasc. Dis. – 2025. – № 34. – Р. 108251. https://doi.org/10.1016/j.jstrokecerebrovasdis.2025.108251.

34. The Hemisphere of the Brain in Which a Stroke Has Occurred Visible in the Heart Rate Variability / J. Aftyka et al // J. Life. – 2022. – № 12. – Р. 1659. https://doi.org/10.3390/life12101659.

35. Ischemic Stroke Risk Assessment by Multiscale Entropy Analysis of Heart Rate Variability in Patients with Persistent Atrial Fibrillation / G. Chairina et al // Entropy. – 2021, 23, 918. https://doi.org/10.3390/e23070918.

36. Baroreflex Sensitivity but Not Microvolt T-Wave Alternans Can Predict Major Adverse Cardiac Events in Ischemic Heart Failure / D.K. Kaufmann et al // Cardiol. J. – 2022. – № 29. – Р. 1004-1012. https://doi.org/10.5603/CJ.a2020.0129.

37. Accuracy of Physicians Interpreting Photoplethysmography and Electrocardiography Tracings to Detect Atrial Fibrillation: INTERPRET-AF / Н. Gruwez et al // Front. Cardiovasc. Med. – 2021. – № 8. – Р. 734737. https://doi.org/10.3389/fcvm.2021.734737.


Рецензия

Для цитирования:


Байғараева Ж.Е., Болтабоева А.К., Иманбек Б.Т., Кожамбердиева М.И., Бектурганова А.Б. АНАЛИЗ ВАРИАБЕЛЬНОСТИ СЕРДЕЧНОГО РИТМА НА ОСНОВЕ ФОТОПЛЕТИЗМОГРАФИИ С ПРИМЕНЕНИЕМ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ ДЛЯ НЕИНВАЗИВНОГО СКРИНИНГА ИШЕМИЧЕСКОЙ БОЛЕЗНИ СЕРДЦА С ИСПОЛЬЗОВАНИЕМ УСТРОЙСТВА ZHUREK IOT. Вестник Университета Шакарима. Серия технические науки. 2025;1(4(20)):229-238. https://doi.org/10.53360/2788-7995-2025-4(20)-27

For citation:


Baigarayeva Zh.Y., Boltaboyeva A.K., Imanbek B.T., Kozhamberdiyeva M.I., Bekturganova A.B. PHOTOPLETHYSMOGRAPHY-BASED HEART RATE VARIABILITY ANALYSIS USING MACHINE LEARNING METHODS FOR NON-INVASIVE SCREENING OF CORONARY ARTERY DISEASE WITH THE ZHUREK IOT DEVICE. Bulletin of Shakarim University. Technical Sciences. 2025;1(4(20)):229-238. (In Kazakh) https://doi.org/10.53360/2788-7995-2025-4(20)-27

Просмотров: 14

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X