ТҰРАҚТЫ ОРАУЫШ МАТЕРИАЛДАРҒА АРНАЛҒАН ПОЛИСАХАРИД НЕГІЗІНДЕГІ БИОПЛАСТИКТЕР: КОВАЛЕНТТІ ЕМЕС ӘРЕКЕТТЕСУЛЕР МЕН ТРАНСЭТЕРИФИКАЦИЯНЫҢ РӨЛІ
https://doi.org/10.53360/2788-7995-2025-3(19)-69
Аңдатпа
Қоршаған ортада пластик қалдықтарының шектен тыс жиналуы экологиялық жағынан қауіпсіз және ыдырайтын орауыш материалдарын жасауға деген жаһандық қызығушылықты арттырды. Биологиялық ыдырайтын полимерлердің ішінде өсімдік тектес целлюлоза мен оның микробтық аналогы – бактериалды целлюлозадан (БЦ) алынатын биопластиктер жаңартылатындығы, ыдырайтындығы және қолайлы механикалық қасиеттері арқасында ерекше назар аудартып отыр. Алайда, олардың практикалық қолданылуы гидрофильділігі мен сыртқы орта әсерлеріне сезімталдығы сияқты мәселелермен шектеледі. Бұл кемшіліктерді жою үшін соңғы зерттеулерде полисахаридтер құрылымын ковалентті емес әрекеттесулер (мысалы, сутектік байланыстар, иондық айқас байланыстар) және ковалентті модификациялар (мысалы, трансэтерификация) арқылы түрлендіру жолдары қарастырылуда. Мұндай тәсілдер материалдардың механикалық беріктігін, икемділігін және суға төзімділігін едәуір арттыра алады. Осы шолуда полисахарид негізіндегі биопластиктерді жетілдіруге бағытталған соңғы ғылыми жетістіктер талданып, физикалық және химиялық модификацияларды біріктіру арқылы олардың жұмыс сипаттамаларын жақсарту мүмкіндіктері қарастырылады. Әсіресе бактериалды целлюлоза, лапонит, хитозан және май қышқылының эфирлерінен тұратын гибридті жүйелердің синергетикалық әсеріне ерекше көңіл бөлінеді. Жалпы алғанда, ковалентті емес және ковалентті модификацияларды біріктіру – келешегі зор тұрақты орауыш материалдарын жасау үшін тиімді стратегия ретінде қарастырылады.
Тірек сөздер
Авторлар туралы
Р. Н. ТулееваҚазақстан
Рысгуль Нурлановна Тулеева – докторант, органикалық заттар, табиғи қосылыстар және полимерлер химиясы мен технологиясы кафедрасы
050043, Қазақстан Республикасы, Алматы қ., Сәтпаев көшесі, 22
Қазақстан Республикасы, Алматы қ
050040, Қазақстан Республикасы, Алматы қ., әл-Фараби даңғылы, 71
Н. Н. Гизатуллина
Қазақстан
Наргиз Нурмухаметовна Гизатуллина – Магистр, химиялық және биохимиялық инженерия кафедрасы, К. Тұрысов атындағы Геология және мұнай-газ ісі институты
050043, Қазақстан Республикасы, Алматы қ., Сәтпаев көшесі, 22
Қазақстан Республикасы, Алматы қ
Р. А. Турганова
Қазақстан
Ронагуль Адилжановна Турганова – PhD, химиялық және биохимиялық инженерия кафедрасы, К. Тұрысов атындағы Геология және мұнай-газ ісі институты
050043, Қазақстан Республикасы, Алматы қ., Сәтпаев көшесі, 22
Қазақстан Республикасы, Алматы қ
А. М. Белкожаев
Қазақстан
Аяз Маратович Белкожаев – PhD, химиялық және биохимиялық инженерия кафедрасының қауымдастырылған профессоры, К. Тұрысов атындағы Геология және мұнай-газ ісі институты
050043, Қазақстан Республикасы, Алматы қ., Сәтпаев көшесі, 22
Г. Толеутай
Қазақстан
Гаухар Толеутай – PhD, Химиялық және биохимиялық инженерия кафедрасы, К. Тұрысов атындағы Геология және мұнай-газ ісі институты
050043, Қазақстан Республикасы, Алматы қ., Сәтпаев көшесі, 22
Ноксвилл, TN 37996, АҚШ
Әдебиет тізімі
1. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative / C. Liu et al // Matter. – 2020. – Vol. 3, № 6. – P. 2066-2079. https://doi.org/10.1016/j.matt.2020.10.004.
2. Zhu Y. Sustainable polymers from renewable resources / Y. Zhu, C. Romain, C.K. Williams // Nature. – 2016. – Vol. 540, № 7633. – P. 354-362. https://doi.org/10.1038/nature21001.
3. Lignin as a wood‐inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement / B. Jiang et al // Adv. Funct. Mater. – 2020. – Vol. 30, № 4. – P. 1906307. https://doi.org/10.1002/adfm.201906307.
4. Increased production of bacterial cellulose as starting point for scaled-up applications / M. Gullo et al // Appl. Microbiol. Biotechnol. – 2017. – Vol. 101. – P. 8115-8127. https://doi.org/10.1007/s00253-017-8539-3.
5. Cost-effective synthesis of bacterial cellulose and its applications in the food and environmental sectors / T. Kamal et al // Gels. – 2022. – Vol. 8, № 9. – P. 552. https://doi.org/10.3390/gels8090552.
6. Recent trends in the application of films and coatings based on starch, cellulose, chitin, chitosan, xanthan, gellan, pullulan, Arabic gum, alginate, pectin, and carrageenan in food packaging / H. Rostamabadi et al // Food Front. – 2024. – Vol. 5, № 2. – P. 350-391. https://doi.org/10.1002/fft2.342.
7. Chitosan and pectin-based films and coatings with active components for application in antimicrobial food packaging / J. Jovanović et al // Prog. Org. Coat. – 2021. – Vol. 158. – P. 106349. https://doi.org/10.1016/j.porgcoat.2021.106349.
8. Aleksanyan K.V. Polysaccharides for biodegradable packaging materials: Past, present, and future (Brief Review) / K.V. Aleksanyan // Polymers (Basel). – 2023. – Vol. 15, № 2. – P. 451. https://doi.org/10.3390/polym15020451.
9. Popyrina T.N. Polysaccharide-based films: from packaging materials to functional food / T.N. Popyrina, T.S. Demina, T.A. Akopova // J. Food Sci. Technol. – 2023. – Vol. 60, № 11. – P. 2736- 2747. https://doi.org/10.1007/s13197-022-05595-x.
10. Polysaccharide-based films and coatings for food packaging: A review / Р. Cazón et al // Food Hydrocoll. – 2017. – Vol. 68. – P. 136-148. https://doi.org/10.1016/j.foodhyd.2016.09.009.
11. Chemical modification of polysaccharides for sustainable bioplastics / Z. Wang et al // Trends in Chemistry. – 2024. – Vol. 6, № 6. – P. 314-331. https://doi.org/10.1016/j.trechm.2024.04.009.
12. A review on the modification of cellulose and its applications / Т. Aziz et al // Polymers (Basel). – 2022. – Vol. 14, № 15. – P. 3206. https://doi.org/10.3390/polym14153206.
13. Cellulose: a review of water interactions, applications in composites, and water treatment / A. Etale еt al // Chem. Rev. – 2023. – Vol. 123, № 5. – P. 2016-2048. https://doi.org/10.1021/acs.chemrev.2c00477.
14. Cellulose and starch-based bioplastics: a review of advances and challenges for sustainability / M.T. Hossain et al // Polymer-Plastics Technology and Materials. – 2024. – Vol. 63, № 10. – P. 1329-1349. https://doi.org/10.1080/25740881.2024.2329980.
15. An insight overview of bioplastics produced from cellulose extracted from plant material, its applications and degradation / S. Nigam et al // Environmental Sustainability. – 2022. – Vol. 5, № 4. – P. 423-441. https://doi.org/10.1007/s42398-022-00248-3.
16. Bio-based packaging: materials, modifications, industrial applications and sustainability / C.L. Reichert et al // Polymers. – 2020. – Vol. 12, № 7. https://doi.org/10.3390/polym12071558.
17. Tunable mechanical properties in biodegradable cellulosic bioplastics achieved via ring-opening polymerization / J. Kim et al. // ACS Nano. – 2025. https://doi.org/10.1021/acsnano.4c16563.
18. Transparent organic-inorganic nanocomposite membranes based on carboxymethylcellulose and synthetic clay / R.L. de Oliveira et al // Ind. Crops Prod. – 2015. – Vol. 69. – P. 415-423. https://doi.org/10.1016/j.indcrop.2015.02.015.
19. Bacterial cellulose as a raw material for food and food packaging applications / H.M.C. Azeredo et al // Front. Sustain. Food Syst. – 2019. – Vol. 3. https://doi.org/10.3389/fsufs.2019.00007.
20. Recent advances in bacterial cellulose: a low-cost effective production media, optimization strategies and applications / H. El-Gendi et al // Cellulose. – 2022. – Vol. 29, № 14. – P. 7495-7533. https://doi.org/10.1007/s10570-022-04697-1.
21. Bacterial cellulose: production, characterization, and application as antimicrobial agent / D. Lahiri et al // Int. J. Mol. Sci. – 2021. – Vol. 22, № 23. – P. 12984. https://doi.org/10.3390/ijms222312984.
22. Cazón P. Bacterial cellulose as a biodegradable food packaging material: a review / P. Cazón, M. Vázquez // Food Hydrocoll. – 2021. – Vol. 113. – P. 106530. https://doi.org/10.1016/j.foodhyd.2020.106530.
23. Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material / K.A. Zahan et al // Mater. Today Proc. – 2020. – Vol. 31. – P. 83-88. https://doi.org/10.1016/j.matpr.2020.01.201.
24. Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials / Y. Xu et al // Carbohydr. Polym. – 2021. – Vol. 260. https://doi.org/10.1016/j.carbpol.2021.117778.
25. Active biodegradable bacterial cellulose films with potential to minimize the plastic pollution: preparation, antibacterial application, and mechanism / X. Shi et al // Food Chem. – 2025. – Vol. 464. https://doi.org/10.1016/j.foodchem.2024.141852.
26. Physicochemical, antibacterial and food preservation properties of active packaging films based on chitosan/ε-polylysine-grafted bacterial cellulose / W. Liao et al // Int. J. Biol. Macromol. – 2023. – Vol. 253. https://doi.org/10.1016/j.ijbiomac.2023.127231.
27. Kamaruddin I. The novel trend of bacterial cellulose as biodegradable and oxygen scavenging films for food packaging application: an integrative review / I. Kamaruddin, A. Dirpan, F. Bastian // IOP Conf. Ser. Earth Environ. Sci. – 2021. – Vol. 807, № 2. – P. 022066. https://doi.org/10.1088/1755-1315/807/2/022066.
28. Conversion of macroalgae into environmentally friendly bioplastics by noncovalent bond assembly / S. Zhang et al // ACS Sustain. Chem. Eng. – 2024. – Vol. 12, № 47. – P. 17372-17382. https://doi.org/10.1021/acssuschemeng.4c07767.
29. Tough, degradable bioplastics enabling by noncovalent assembly of polysaccharides and inorganic ionic oligomers / Y. Ma et al // ACS Appl. Polym. Mater. – 2025. – Vol. 7, № 3. – P. 1896-1908. https://doi.org/10.1021/acsapm.4c03721.
30. Strengthening and toughening of TEMPO-oxidized cellulose nanofibers/polymers composite films based on hydrogen bonding interactions / R. Zhao et al // Compos. Commun. – 2022. – Vol. 35. – P. 101322. https://doi.org/10.1016/j.coco.2022.101322.
31. A strong, biodegradable and recyclable lignocellulosic bioplastic / Q. Xia et al // Nat. Sustain. – 2021. – Vol. 4, № 7. – P. 627-635. https://doi.org/10.1038/s41893-021-00702-w.
32. Pontoh R. Density functional theory study of intermolecular interactions between amylum and cellulose / R. Pontoh, A. Nuryadin, H. Suryadi // Indonesian J. Chem. – 2022. – Vol. 22, № 1. – P. 253-262. https://doi.org/10.22146/ijc.69241.
33. Cross-linkage effect of cellulose/laponite hybrids in aqueous dispersions and solid films / Z. Yuan et al // Carbohydr. Polym. – 2014. – Vol. 102, № 1. – P. 431-437. https://doi.org/10.1016/j.carbpol.2013.11.051.
34. Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite / G.A. Valencia et al // Int. J. Biol. Macromol. – 2018. – Vol. 107. – P. 1576-1583. https://doi.org/10.1016/j.ijbiomac.2017.10.031.
35. Polysaccharide-based high barrier food packaging film: design and application / J. Guo et al // Crit. Rev. Food Sci. Nutr. – P. 1-20. https://doi.org/10.1080/10408398.2025.2476118.
36. Development of polyvinyl alcohol/chitosan/modified bacterial nanocellulose films incorporated with 4-hexylresorcinol for food packaging applications / K.W. Choo et al // Food Packag. Shelf Life. – 2021. – Vol. 30. – P. 100769. https://doi.org/10.1016/j.fpsl.2021.100769.
37. Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material / K.A. Zahan et al // Mater. Today Proc. – 2020. – Vol. 31. – P. 83-88. https://doi.org/10.1016/j.matpr.2020.01.201.
38. Cassava starch/bacterial cellulose-based bioplastics with Zanthoxylum acanthopodium / S. Gea et al // Biodiversitas. – 2022. – Vol. 23, № 5. – P. 2601-2608. https://doi.org/10.13057/biodiv/d230542.
39. Alvarado N. Use of chitosan-based polyelectrolyte complexes for its potential application in active food packaging: a review of recent literature / N. Alvarado, R.L. Abarca, C. Linares-Flores // Int. J. Mol. Sci. – 2023. – Vol. 24, № 14. https://doi.org/10.3390/ijms241411535.
40. Roy S. Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide / S. Roy, J.-W. Rhim // Int. J. Biol. Macromol. – 2020. – Vol. 148. – P. 666-676. https://doi.org/10.1016/j.ijbiomac.2020.01.204.
41. Antimicrobial dual ionic-covalent κ-carrageenan/carboxymethyl chitosan membranes with robust moisture retention property / H. Zhang et al // Polym. Adv. Technol. – 2023. – Vol. 34, № 2. – P. 691-701. https://doi.org/10.1002/pat.5920.
42. Metal-coordination and surface adhesion-assisted molding enabled strong, water-resistant carboxymethyl cellulose films / W. Yang et al // Carbohydr. Polym. – 2022. – Vol. 298. – P. 120084. https://doi.org/10.1016/j.carbpol.2022.120084.
43. Phosphorylated micro- and nanocellulose-filled chitosan nanocomposites as fully sustainable, biologically active bioplastics / S. Blilid et al // ACS Sustain. Chem. Eng. – 2020. – Vol. 8, № 50. – P. 18354-18365. https://doi.org/10.1021/acssuschemeng.0c04426.
44. Homogeneous transesterification of sugar cane bagasse toward sustainable plastics / M.-J. Chen et al // ACS Sustain. Chem. Eng. – 2017. – Vol. 5, № 1. – P. 360-366. https://doi.org/10.1021/acssuschemeng.6b01735.
45. Organocatalytic esterification of polysaccharides for food applications: a review / K.V. Ragavan et al // Trends Food Sci. Technol. – 2022. – Vol. 119. – P. 45-56. https://doi.org/10.1016/j.tifs.2021.11.028.
46. Thermoplastic cellulose-graft-poly(L-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst / C. Yan et al // Biomacromolecules. – 2009. – Vol. 10, № 8. – P. 2013-2018. https://doi.org/10.1021/bm900447u.
47. Sustainable transesterification of cellulose with high oleic sunflower oil in a DBU–CO₂ switchable solvent / K.N. Onwukamike et al // ACS Sustain. Chem. Eng. – 2018. – Vol. 6, № 7. – P. 8826-8835 https://doi.org/10.1021/acssuschemeng.8b01186.
Рецензия
Дәйектеу үшін:
Тулеева Р.Н., Гизатуллина Н.Н., Турганова Р.А., Белкожаев А.М., Толеутай Г. ТҰРАҚТЫ ОРАУЫШ МАТЕРИАЛДАРҒА АРНАЛҒАН ПОЛИСАХАРИД НЕГІЗІНДЕГІ БИОПЛАСТИКТЕР: КОВАЛЕНТТІ ЕМЕС ӘРЕКЕТТЕСУЛЕР МЕН ТРАНСЭТЕРИФИКАЦИЯНЫҢ РӨЛІ. Шәкәрім Университетінің Хабаршысы. Техникалық ғылымдар сериясы. 2025;(3(19)):623-633. https://doi.org/10.53360/2788-7995-2025-3(19)-69
For citation:
Tuleyeva R.N., Gizatullina N.N., Turganova R.A., Belkozhayev A.M., Toleutay G. POLYSACCHARIDE-BASED BIOPLASTICS FOR SUSTAINABLE PACKAGING: ROLE OF NONCOVALENT INTERACTIONS AND TRANSESTERIFICATION. Bulletin of Shakarim University. Technical Sciences. 2025;(3(19)):623-633. https://doi.org/10.53360/2788-7995-2025-3(19)-69
                    














            