Preview

Вестник Университета Шакарима. Серия технические науки

Расширенный поиск

БИОПЛАСТИКИ НА ОСНОВЕ ПОЛИСАХАРИДОВ ДЛЯ УСТОЙЧИВОЙ УПАКОВКИ: РОЛЬ НЕКОВАЛЕНТНЫХ ВЗАИМОДЕЙСТВИЙ И ТРАНСЭТЕРИФИКАЦ

https://doi.org/10.53360/2788-7995-2025-3(19)-69

Аннотация

Усиление проблемы загрязнения окружающей среды пластиковыми отходами стимулировало во всём мире активный поиск экологически безопасных и устойчивых упаковочных материалов. Среди биоразлагаемых полимеров особый интерес вызывают биопластики на основе полисахаридов – особенно из растительной целлюлозы и её микробного аналога, бактериальной целлюлозы (БЦ) – благодаря их возобновляемости, способности к биодеградации и благоприятным механическим свойствам. Тем не менее, их практическое применение часто ограничивается такими факторами, как гидрофильность и уязвимость к внешним воздействиям. Для преодоления этих ограничений в последние годы активно изучаются структурные модификации, включающие как нековалентные взаимодействия (например, водородные связи, ионная сшивка), так и ковалентные подходы, такие как трансэтерификация. Эти методы доказали свою эффективность в повышении механической прочности, гибкости и водостойкости материалов. В данном обзоре рассматриваются современные достижения в области разработки биопластиков на основе полисахаридов с особым акцентом на сочетание физических и химических модификаций для улучшения эксплуатационных характеристик. Особое внимание уделяется гибридным системам с участием бактериальной целлюлозы, лапонита, хитозана и эфиров жирных кислот, демонстрирующим перспективные синергетические эффекты. В целом, интеграция нековалентных и ковалентных модификаций представляет собой перспективную стратегию для создания упаковочных материалов нового поколения, ориентированных на устойчивое развитие.

Об авторах

Р. Н. Тулеева
Сатбаев университет; Научно-Исследовательский Институт Перспективных Материалов; Казахский национальный университет имени аль-Фараби
Казахстан

Рысгуль Нурлановна Тулеева – докторант кафедры химии и технологии органических веществ, природных соединений и полимеров

050043, Республика Казахстан, г. Алматы, ул. Сатпаева, 22

040000, Республика Казахстан, г. Алматы

050040, Республика Казахстан, г. Алматы, пр. аль-Фараби, 71



Н. Н. Гизатуллина
Сатбаев университет; Научно-Исследовательский Институт Перспективных Материалов
Казахстан

Наргиз Нурмухаметовна Гизатуллина – магистр кафедры химической и биохимической инженерии Института геологии и нефтегазового дела им. К. Турыcова

050043, Республика Казахстан, г. Алматы, ул. Сатпаева, 22

040000, Республика Казахстан, г. Алматы



Р. А. Турганова
Сатбаев университет; Научно-Исследовательский Институт Перспективных Материалов
Казахстан

Ронагуль Адилжановна Турганова – PhD, кафедрa химической и биохимической инженерии Института геологии и нефтегазового дела им. К. Турыcова

050043, Республика Казахстан, г. Алматы, ул. Сатпаева, 22

040000, Республика Казахстан, г. Алматы



А. М. Белкожаев
Сатбаев университет
Казахстан

Аяз Маратович Белкожаев – PhD, ассоциированный профессор кафедры химической и биохимической инженерии Института геологии и нефтегазового дела им. К. Турыcова

050043, Республика Казахстан, г. Алматы, ул. Сатпаева, 22



Г. Tолеутай
Сатбаев университет; Университет Теннесси
Казахстан

Гаухар Толеутай – PhD кафедры химической и биохимической инженерии Института геологии и нефтегазового дела им. К. Турыcова

050043, Республика Казахстан, г. Алматы, ул. Сатпаева, 22

Ноксвилл, TN 37996, США



Список литературы

1. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative / C. Liu et al // Matter. – 2020. – Vol. 3, № 6. – P. 2066-2079. https://doi.org/10.1016/j.matt.2020.10.004.

2. Zhu Y. Sustainable polymers from renewable resources / Y. Zhu, C. Romain, C.K. Williams // Nature. – 2016. – Vol. 540, № 7633. – P. 354-362. https://doi.org/10.1038/nature21001.

3. Lignin as a wood‐inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement / B. Jiang et al // Adv. Funct. Mater. – 2020. – Vol. 30, № 4. – P. 1906307. https://doi.org/10.1002/adfm.201906307.

4. Increased production of bacterial cellulose as starting point for scaled-up applications / M. Gullo et al // Appl. Microbiol. Biotechnol. – 2017. – Vol. 101. – P. 8115-8127. https://doi.org/10.1007/s00253-017-8539-3.

5. Cost-effective synthesis of bacterial cellulose and its applications in the food and environmental sectors / T. Kamal et al // Gels. – 2022. – Vol. 8, № 9. – P. 552. https://doi.org/10.3390/gels8090552.

6. Recent trends in the application of films and coatings based on starch, cellulose, chitin, chitosan, xanthan, gellan, pullulan, Arabic gum, alginate, pectin, and carrageenan in food packaging / H. Rostamabadi et al // Food Front. – 2024. – Vol. 5, № 2. – P. 350-391. https://doi.org/10.1002/fft2.342.

7. Chitosan and pectin-based films and coatings with active components for application in antimicrobial food packaging / J. Jovanović et al // Prog. Org. Coat. – 2021. – Vol. 158. – P. 106349. https://doi.org/10.1016/j.porgcoat.2021.106349.

8. Aleksanyan K.V. Polysaccharides for biodegradable packaging materials: Past, present, and future (Brief Review) / K.V. Aleksanyan // Polymers (Basel). – 2023. – Vol. 15, № 2. – P. 451. https://doi.org/10.3390/polym15020451.

9. Popyrina T.N. Polysaccharide-based films: from packaging materials to functional food / T.N. Popyrina, T.S. Demina, T.A. Akopova // J. Food Sci. Technol. – 2023. – Vol. 60, № 11. – P. 2736- 2747. https://doi.org/10.1007/s13197-022-05595-x.

10. Polysaccharide-based films and coatings for food packaging: A review / Р. Cazón et al // Food Hydrocoll. – 2017. – Vol. 68. – P. 136-148. https://doi.org/10.1016/j.foodhyd.2016.09.009.

11. Chemical modification of polysaccharides for sustainable bioplastics / Z. Wang et al // Trends in Chemistry. – 2024. – Vol. 6, № 6. – P. 314-331. https://doi.org/10.1016/j.trechm.2024.04.009.

12. A review on the modification of cellulose and its applications / Т. Aziz et al // Polymers (Basel). – 2022. – Vol. 14, № 15. – P. 3206. https://doi.org/10.3390/polym14153206.

13. Cellulose: a review of water interactions, applications in composites, and water treatment / A. Etale еt al // Chem. Rev. – 2023. – Vol. 123, № 5. – P. 2016-2048. https://doi.org/10.1021/acs.chemrev.2c00477.

14. Cellulose and starch-based bioplastics: a review of advances and challenges for sustainability / M.T. Hossain et al // Polymer-Plastics Technology and Materials. – 2024. – Vol. 63, № 10. – P. 1329-1349. https://doi.org/10.1080/25740881.2024.2329980.

15. An insight overview of bioplastics produced from cellulose extracted from plant material, its applications and degradation / S. Nigam et al // Environmental Sustainability. – 2022. – Vol. 5, № 4. – P. 423-441. https://doi.org/10.1007/s42398-022-00248-3.

16. Bio-based packaging: materials, modifications, industrial applications and sustainability / C.L. Reichert et al // Polymers. – 2020. – Vol. 12, № 7. https://doi.org/10.3390/polym12071558.

17. Tunable mechanical properties in biodegradable cellulosic bioplastics achieved via ring-opening polymerization / J. Kim et al. // ACS Nano. – 2025. https://doi.org/10.1021/acsnano.4c16563.

18. Transparent organic-inorganic nanocomposite membranes based on carboxymethylcellulose and synthetic clay / R.L. de Oliveira et al // Ind. Crops Prod. – 2015. – Vol. 69. – P. 415-423. https://doi.org/10.1016/j.indcrop.2015.02.015.

19. Bacterial cellulose as a raw material for food and food packaging applications / H.M.C. Azeredo et al // Front. Sustain. Food Syst. – 2019. – Vol. 3. https://doi.org/10.3389/fsufs.2019.00007.

20. Recent advances in bacterial cellulose: a low-cost effective production media, optimization strategies and applications / H. El-Gendi et al // Cellulose. – 2022. – Vol. 29, № 14. – P. 7495-7533. https://doi.org/10.1007/s10570-022-04697-1.

21. Bacterial cellulose: production, characterization, and application as antimicrobial agent / D. Lahiri et al // Int. J. Mol. Sci. – 2021. – Vol. 22, № 23. – P. 12984. https://doi.org/10.3390/ijms222312984.

22. Cazón P. Bacterial cellulose as a biodegradable food packaging material: a review / P. Cazón, M. Vázquez // Food Hydrocoll. – 2021. – Vol. 113. – P. 106530. https://doi.org/10.1016/j.foodhyd.2020.106530.

23. Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material / K.A. Zahan et al // Mater. Today Proc. – 2020. – Vol. 31. – P. 83-88. https://doi.org/10.1016/j.matpr.2020.01.201.

24. Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials / Y. Xu et al // Carbohydr. Polym. – 2021. – Vol. 260. https://doi.org/10.1016/j.carbpol.2021.117778.

25. Active biodegradable bacterial cellulose films with potential to minimize the plastic pollution: preparation, antibacterial application, and mechanism / X. Shi et al // Food Chem. – 2025. – Vol. 464. https://doi.org/10.1016/j.foodchem.2024.141852.

26. Physicochemical, antibacterial and food preservation properties of active packaging films based on chitosan/ε-polylysine-grafted bacterial cellulose / W. Liao et al // Int. J. Biol. Macromol. – 2023. – Vol. 253. https://doi.org/10.1016/j.ijbiomac.2023.127231.

27. Kamaruddin I. The novel trend of bacterial cellulose as biodegradable and oxygen scavenging films for food packaging application: an integrative review / I. Kamaruddin, A. Dirpan, F. Bastian // IOP Conf. Ser. Earth Environ. Sci. – 2021. – Vol. 807, № 2. – P. 022066. https://doi.org/10.1088/1755-1315/807/2/022066.

28. Conversion of macroalgae into environmentally friendly bioplastics by noncovalent bond assembly / S. Zhang et al // ACS Sustain. Chem. Eng. – 2024. – Vol. 12, № 47. – P. 17372-17382. https://doi.org/10.1021/acssuschemeng.4c07767.

29. Tough, degradable bioplastics enabling by noncovalent assembly of polysaccharides and inorganic ionic oligomers / Y. Ma et al // ACS Appl. Polym. Mater. – 2025. – Vol. 7, № 3. – P. 1896-1908. https://doi.org/10.1021/acsapm.4c03721.

30. Strengthening and toughening of TEMPO-oxidized cellulose nanofibers/polymers composite films based on hydrogen bonding interactions / R. Zhao et al // Compos. Commun. – 2022. – Vol. 35. – P. 101322. https://doi.org/10.1016/j.coco.2022.101322.

31. A strong, biodegradable and recyclable lignocellulosic bioplastic / Q. Xia et al // Nat. Sustain. – 2021. – Vol. 4, № 7. – P. 627-635. https://doi.org/10.1038/s41893-021-00702-w.

32. Pontoh R. Density functional theory study of intermolecular interactions between amylum and cellulose / R. Pontoh, A. Nuryadin, H. Suryadi // Indonesian J. Chem. – 2022. – Vol. 22, № 1. – P. 253-262. https://doi.org/10.22146/ijc.69241.

33. Cross-linkage effect of cellulose/laponite hybrids in aqueous dispersions and solid films / Z. Yuan et al // Carbohydr. Polym. – 2014. – Vol. 102, № 1. – P. 431-437. https://doi.org/10.1016/j.carbpol.2013.11.051.

34. Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite / G.A. Valencia et al // Int. J. Biol. Macromol. – 2018. – Vol. 107. – P. 1576-1583. https://doi.org/10.1016/j.ijbiomac.2017.10.031.

35. Polysaccharide-based high barrier food packaging film: design and application / J. Guo et al // Crit. Rev. Food Sci. Nutr. – P. 1-20. https://doi.org/10.1080/10408398.2025.2476118.

36. Development of polyvinyl alcohol/chitosan/modified bacterial nanocellulose films incorporated with 4-hexylresorcinol for food packaging applications / K.W. Choo et al // Food Packag. Shelf Life. – 2021. – Vol. 30. – P. 100769. https://doi.org/10.1016/j.fpsl.2021.100769.

37. Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material / K.A. Zahan et al // Mater. Today Proc. – 2020. – Vol. 31. – P. 83-88. https://doi.org/10.1016/j.matpr.2020.01.201.

38. Cassava starch/bacterial cellulose-based bioplastics with Zanthoxylum acanthopodium / S. Gea et al // Biodiversitas. – 2022. – Vol. 23, № 5. – P. 2601-2608. https://doi.org/10.13057/biodiv/d230542.

39. Alvarado N. Use of chitosan-based polyelectrolyte complexes for its potential application in active food packaging: a review of recent literature / N. Alvarado, R.L. Abarca, C. Linares-Flores // Int. J. Mol. Sci. – 2023. – Vol. 24, № 14. https://doi.org/10.3390/ijms241411535.

40. Roy S. Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide / S. Roy, J.-W. Rhim // Int. J. Biol. Macromol. – 2020. – Vol. 148. – P. 666-676. https://doi.org/10.1016/j.ijbiomac.2020.01.204.

41. Antimicrobial dual ionic-covalent κ-carrageenan/carboxymethyl chitosan membranes with robust moisture retention property / H. Zhang et al // Polym. Adv. Technol. – 2023. – Vol. 34, № 2. – P. 691-701. https://doi.org/10.1002/pat.5920.

42. Metal-coordination and surface adhesion-assisted molding enabled strong, water-resistant carboxymethyl cellulose films / W. Yang et al // Carbohydr. Polym. – 2022. – Vol. 298. – P. 120084. https://doi.org/10.1016/j.carbpol.2022.120084.

43. Phosphorylated micro- and nanocellulose-filled chitosan nanocomposites as fully sustainable, biologically active bioplastics / S. Blilid et al // ACS Sustain. Chem. Eng. – 2020. – Vol. 8, № 50. – P. 18354-18365. https://doi.org/10.1021/acssuschemeng.0c04426.

44. Homogeneous transesterification of sugar cane bagasse toward sustainable plastics / M.-J. Chen et al // ACS Sustain. Chem. Eng. – 2017. – Vol. 5, № 1. – P. 360-366. https://doi.org/10.1021/acssuschemeng.6b01735.

45. Organocatalytic esterification of polysaccharides for food applications: a review / K.V. Ragavan et al // Trends Food Sci. Technol. – 2022. – Vol. 119. – P. 45-56. https://doi.org/10.1016/j.tifs.2021.11.028.

46. Thermoplastic cellulose-graft-poly(L-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst / C. Yan et al // Biomacromolecules. – 2009. – Vol. 10, № 8. – P. 2013-2018. https://doi.org/10.1021/bm900447u.

47. Sustainable transesterification of cellulose with high oleic sunflower oil in a DBU–CO₂ switchable solvent / K.N. Onwukamike et al // ACS Sustain. Chem. Eng. – 2018. – Vol. 6, № 7. – P. 8826-8835 https://doi.org/10.1021/acssuschemeng.8b01186.


Рецензия

Для цитирования:


Тулеева Р.Н., Гизатуллина Н.Н., Турганова Р.А., Белкожаев А.М., Tолеутай Г. БИОПЛАСТИКИ НА ОСНОВЕ ПОЛИСАХАРИДОВ ДЛЯ УСТОЙЧИВОЙ УПАКОВКИ: РОЛЬ НЕКОВАЛЕНТНЫХ ВЗАИМОДЕЙСТВИЙ И ТРАНСЭТЕРИФИКАЦ. Вестник Университета Шакарима. Серия технические науки. 2025;(3(19)):623-633. https://doi.org/10.53360/2788-7995-2025-3(19)-69

For citation:


Tuleyeva R.N., Gizatullina N.N., Turganova R.A., Belkozhayev A.M., Toleutay G. POLYSACCHARIDE-BASED BIOPLASTICS FOR SUSTAINABLE PACKAGING: ROLE OF NONCOVALENT INTERACTIONS AND TRANSESTERIFICATION. Bulletin of Shakarim University. Technical Sciences. 2025;(3(19)):623-633. https://doi.org/10.53360/2788-7995-2025-3(19)-69

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X