NIOBIUM RECOVERY FROM TITANIUM TETRACHLORIDE PRODUCTION BY-PRODUCTS
https://doi.org/10.53360/2788-7995-2025-3(19)-67
Abstract
This article presents the results of a study on the processing of industrial by-products from titanium tetrachloride production for the purpose of niobium extraction. Three types of niobium-containing materials were studied: titanium chlorinator sludge, dust chamber sublimate, and molten slag from the dust-settling chamber with a salt bath. The chemical and phase compositions were investigated using SEM-EDS, XRF, and XRD methods. Niobium was found predominantly in the form of refractory oxides and complex phases. Thermodynamic modeling using HSC Chemistry confirmed the stability of niobium oxides and the possibility of chlorination to volatile chlorides in a reducing environment. Leaching experiments showed that traditional water and acid treatments (HCl, H₂SO₄) result in low niobium extraction rates (up to 26%), whereas HFcontaining solutions allow for recovery of up to 53%. Based on experimental and modeling data, optimal parameters for selective niobium extraction were established. The proposed approach enables efficient recovery of valuable rare elements and contributes to the reduction of environmental impact from titanium production residues.
About the Authors
T. SarsembekovKazakhstan
Turar Kusmanovich Sarsembekov – MBA, senior lecturer
050013, Republic of Kazakhstan, Almaty, Satpayev St., 22
T. Chepushtanova
Kazakhstan
Tatyana Aleksandrovna Chepushtanova – PhD in Engineering, associate professor
050013, Republic of Kazakhstan, Almaty, Satpayev St., 22
E. Merkibayev
Kazakhstan
Erik Serikovich Merkibayev – PhD, senior lecturer
050013, Republic of Kazakhstan, Almaty, Satpayev St., 22
T. Yanko
Bulgaria
Erik Serikovich Merkibayev – PhD, senior lecturer
8000, Republic of Bulgaria, Burgas, Aleksandrovska St., 16
A. Zolotov
Kazakhstan
Alexander Zolotov – PhD, Associate Professor
070411, Republic of Kazakhstan, Semey, 20A Glinka St.
References
1. Agulyansky A. The Chemistry of Tantalum and Niobium Fluoride Compounds / A. Agulyansky // Amsterdam: Elsevier, 2004. – 350 p. https://doi.org/10.1016/B978-044451631-1/50000-6.
2. Gupta C.K. Extractive Metallurgy of Niobium. Boca Raton / C.K. Gupta, A.K. Suri. – CRC Press, 1994. – 372 p.
3. Handbook of Ferroalloys / M. Gasik (Ed.). – Amsterdam: Elsevier, 2013. – 512 p. https://doi.org/10.1016/C2011-0-05895-9.
4. Thermodynamic Study on Chlorination of Niobium and Tantalum Oxides Using Carbon Tetrachloride / H. Murakami et al // Materials Transactions. – 2014. – vol. 55, № 4. – Р. 645-650. https://doi.org/10.2320/matertrans.MC201314.
5. Danilov V.S. Thermodynamic characteristics of niobium chlorides formation during chlorination / V.S. Danilov, I.M. Malygin, R.G. Samatov // Russian Journal of Applied Chemistry. – 2005. – vol. 78. – Р. 292-296. https://doi.org/10.1007/s11167-005-0142-3.
6. Barin I. Thermochemical Data of Pure Substances // 3rd ed. Weinheim: VCH Verlagsgesellschaft. – 1995. – Vol. 1-2.
7. Kuznetsova E.S. Thermodynamic modeling of the niobium behavior during pyrometallurgical and chlorination processes / E.S. Kuznetsova, S.A. Chizhevskaya, G.N. Vorozhtsov // Journal of Mining Institute. – 2021. – vol. 248. – Р. 149-157. https://doi.org/10.31897/PMI.2021.2.3.
8. Chlorination of titanium-containing raw materials in molten salts / L.A. Zakharov et al // Theoretical Foundations of Chemical Engineering. – 2009. – vol. 43, № 1. – Р. 62-66. https://doi.org/10.1134/S0040579509010126.
9. Tellez C. Leaching behavior of niobium and tantalum from slag obtained in the chlorination of titanium minerals / C. Tellez, J. Aburto, R. Alonso // Hydrometallurgy. – 2003. – vol. 70, № 1-3. – Р. 97-105. https://doi.org/10.1016/S0304-386X(03)00147-4.
10. Ribeiro R.A. Kinetics of sulfuric acid leaching of a Brazilian niobium ore / R.A. Ribeiro, R.M. Silva, V.A. Leão // Minerals Engineering. – 2010. – vol. 23, № 9. – Р. 704-710. https://doi.org/10.1016/j.mineng.2010.04.006.
11. Takeno N. Atlas of Eh-pH diagrams – Intercomparison of thermodynamic databases / N. Takeno // National Institute of Advanced Industrial Science and Technology (AIST). – Japan, 2005. – 285 p.
12. Sarsembekov T.K. Raspredelenie niobiya i vanadiya v promproduktakh pri proizvodstve tetrakhlorida titana / T.K. Sarsembekov, T.A. Chepushtanova // Tverdye splavy i metally. – 2022. – № 8. – S. 55-60. https://doi.org/10.17580/tsm.2022.08.07. (In Russian).
13. Concomitant extraction process of niobium at the titanium tetrachloride production / T.K. Sarsembekov et al // Voprosy Atomnoj Nauki i Tekhniki. – 2020. – № 1(125). – Р. 173-177.
14. Study of niobium pentoxide behavior under chlorination conditions / Yu.I. Belyaev et al // Tsvetnye Metally. – 2010. – № 6. – Р. 52-57. (In Russian).
Review
For citations:
Sarsembekov T., Chepushtanova T., Merkibayev E., Yanko T., Zolotov A. NIOBIUM RECOVERY FROM TITANIUM TETRACHLORIDE PRODUCTION BY-PRODUCTS. Bulletin of Shakarim University. Technical Sciences. 2025;(3(19)):604-612. (In Russ.) https://doi.org/10.53360/2788-7995-2025-3(19)-67
                    
        













            