Preview

Bulletin of Shakarim University. Technical Sciences

Advanced search

ANALYTICAL REVIEW OF MICROBIOLOGICAL ASPECTS OF PRODUCTION OF BIOLOGICAL PRODUCTS OF STARTERS FOR BAKING PASTRY BASED ON HIGHLY ACTIVE CULTURES OF MICROORGANISMS

https://doi.org/10.53360/2788-7995-2025-3(19)-45

Abstract

The article presents a review of the literature on research on the development of biological products based on highly active cultures of microorganisms for the production of bakery products. The function of microorganisms and their production methods, the fermentation process of starter cultures, the role of bacteria and yeast in fermentation are considered and evaluated, a postbiotic assessment of starter cultures is carried out, and the effect of dough heat treatment on the quality of a bakery product is studied. Research confirms the possibility of increasing the efficiency and regulating the activity of microorganisms in semi-finished bakery products, which will optimize the technological process, reduce technological costs and improve the quality and safety of bakery products. It has also been established that the postbiotic components in sourdough provide beneficial properties for human health, such as better digestibility, saturation, and antioxidant properties. The properties characterizing the stability and properties of postbiotic components after the baking process have been poorly studied in studies. We have identified the need for research based on highly active cultures of microorganisms to develop bread products with postbiotic properties beneficial to the health of the country's population. Therefore, our research will focus on creating a starter culture with a specific microbiological consortium and ingredients that has the ability to enhance nutrients and benefit human health, as well as on developing an effective method for the industrial cultivation of microorganisms for the production of bakery semi-finished products, liquid yeast and starter cultures.

About the Authors

L. B. Umiralieva
LLP «Kazakh Research Institute of Processing and Food Industry»
Kazakhstan

Lyazzat Bekenovna Umiralieva – Deputy Chairman of the Board, Candidate of Technical Sciences

050060, Republic of Kazakhstan, Almaty, 238 Gagarina Avenue



A. B. Оspanov
LLP «Kazakh Research Institute of Processing and Food Industry»
Kazakhstan

Assan Bekeshovich Ospanov – Chief Researcher, Doctor of Technical Sciences

050060, Republic of Kazakhstan, Almaty, 238 Gagarina Avenue



E. T. Ismailova
LLP «Research and Production Center of Microbiology and Virology»
Kazakhstan

Elvira Takeshevna Ismailova – Head of the Department of Scientific and Production, Candidate of Agricultural Sciences 

050010, Republic of Kazakhstan, Almaty, 105 Bogenbai Batyr Street 



I. D. Filatov
International University of Engineering and Technology
Kazakhstan

Ivan Dmitrievich Filatov – Doctoral student 

050060, Republic of Kazakhstan, Almaty, 89/21 Al-Farabi Avenue



References

1. Afanas'eva O.V. Mikrobiologiya khlebopekarnogo proizvodstva v Rossii: NII khlebopekarnoi promyshlennosti / O.V. Afanas'eva; SPBF GoSNIIKHP, 2003. – 183 s. (In Russian).

2. Polyakova S.P. Povyshenie ustoichivosti konditerskikh i khlebobulochnykh izdelii k mikrobiologicheskoi porche / S.P. Polyakova, O.A. Sidorova // Pishchevaya promyshlennost'. – 2012. – № 5. – S.16-18. (In Russian).

3. Materialy Global'nogo Foruma FAO / VOZ po voprosam regulirovaniya bezopasnosti pishchevykh produktov. Povyshenie ehffektivnosti i otkrytosti v sistemakh bezopasnosti pishchevykh produktov. Obmen opytom. Marokko, 28-30 yanvarya 2002 g. http://www.fao.org/docrep/MEETING/004/Y3680R/Y3680R09.htm. (In Russian).

4. Grishin O.S. Vliyanie razlichnykh sposobov prigotovleniya testa na kachestvo khlebobulochnykh izdelii // Pishchevaya promyshlennost'. – 2017. – 352 s. (In Russian).

5. Auehrman L.YA. Tekhnologiya khlebopekarnogo proizvodstva: Uchebnik 9-e izd.; pererab. I dop. / Pod obshch. red. L. I. Puchkovoi. – SPb. Professiya, – 2002. – 416 s. (In Russian).

6. Afanas'eva O.V. Mikrobiologiya khlebopekarnogo proizvodstva. S.-Peterb. fil. Gos. NII khlebopekar. promyshlennosti (SPBF GoSNIIKHP). – SPb.: Beresta, – 2003. – 220 s. (In Russian).

7. Sbornik tekhnologicheskikh instruktsii dlya proizvodstva khleba i khlebobulochnykh izdelii: sbornik. – M.: Preiskurantizdat, 1989. – 494 s. (In Russian).

8. Sbornik sovremennykh tekhnologii khlebobulochnykh izdelii. – Pod obshch. red. chl.-korr. RASKHN, d.eh.n., prof. A.P. Kosovana. – M.: RASKHN, 2008. – 268 s. (In Russian).

9. Chizhova, K.N. Tekhnokhimicheskii kontrol' khlebopekarnogo proizvodstva / K.N. Chizhova, T.N. Shkvarkina, N.V. Zapenina, I.N. Maslov, F.I. Zaglodina. – Izd. 5-oe. – M.: Pishchevaya promyshlennost', 1975. – 280 s. (In Russian).

10. Puchkova L.I. Tekhnologiya khleba, konditerskikh i makaronnykh izdelii. Chast' I / L.I. Puchkova, R.D. Polandova, I.V. Matveeva. – SPb: GIORD, 2005. – 559 s. (In Russian).

11. Mediko-biologicheskie trebovaniya i sanitarnye normy kachestva prodovol'stvennogo syr'ya i pishchevykh produktov. – M.: 1992. – 182 c. (In Russian).

12. Matveeva I.V. Biotekhnologicheskie osnovy prigotovleniya khleba: ucheb. posobie dlya vuzov / I.V. Matveeva, I.G. Belyavskaya. – M: DELi print, 2001. (In Russian).

13. Krasnikova L.V. Mikrobiologiya khlebopekarnogo, konditerskogo i makaronnogo proizvodstv: Ucheb. posobie / L.V. Krasnikova, I.E. Kostrova. – SPb.: SPBGUN i PT, 2001. – 81 s. (In Russian).

14. Rehman S. Flavour in sourdough breads: a review / S. Rehman, A. Paterson, J.R. Piggott // Trends in Food Science & Technology. – 2006. – № 17. – P. 557-566. (In English).

15. Biochemistry and physiology of sourdough lactic acid bacteria / M. Gobbetti et alnds in Food Science & Technology. – 2005. – 16. – P. 57-69. (In English).

16. Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium / H. Lopez et al // J. of Agriculture and Food Chemistry. – 2001. – 49. – P. 2657-2662. (In English).

17. Chaoui A. Making bread with sourdough improves iron bioavailability from reconstituted fortified wheat flour in mice / A. Chaoui, M. Faid, R. Belahsen // J. of Trace Elements in Medicine and Biology. – 2006. – 20. – P. 217-220. (In English).

18. Glucan and Fructan Production by Sourdough Weissella cibaria and Lactobacillus plantarum / R. Di Cagno et al // J. of Agricultural and Food Chemistry. – 2006. – № 54(26). – P. 9873-9881. (In English).

19. Tieking M. Exopolysaccharides from cereal associated lactobacilli / M. Tieking, M.G. Ganzle // Trends Food Sci. Technol. – 2005. – № 16. – P. 79-84. (In English).

20. Bread making using kefir grains as baker’s yeast / S. Plessas et al // Food Chemistry. – 2005. – 93. – P. 585-589. (In English).

21. Fermentation efficiency of thermally dried immobilized kefir on casein as starter culture / D. Dimitrellou et al // Process Biochemistry. – 2008. – 43. – P. 1323-1329. (In English).

22. Role of lactic acid bacteria and yeasts in sourdough fermentation during breadmaking: Evaluation of postbiotic-like components and health benefits / R. Omar et al // Microbiol. Sec. Food Microbiology. – 2022. – V. 13. https://doi.org/10.3389/fmicb.2022.969460. (In English).

23. Poutanen K. Sourdough and cereal fermentation in a nutritional perspective / K. Poutanen, L. Flander, K. Katina // Food Microbiol. – 2009. – R. 693-699. https://doi.org/10.1016/J.FM.2009.07.011. (In English).

24. Sourdough fermented breads are more digestible than Those started with Baker’s yeast alone: an in vivo challenge dissecting distinct gastrointestinal responses / C.G. Rizzello et al // Nutrients. – 2019. – 11. – R. 2954. https://doi.org/10.3390/NU11122954. (In English).

25. Microbial ecology of sourdough fermentations / L. De Vuyst et al // Food Microbiol. – 2014. – 37. – R. 11-29. https://doi.org/10.1016/J.FM.2013.06.002. (In English).

26. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics / S. Salminen et al // Nature Reviews Gastroenterology & Hepatology. – 2021. – 18. – R. 649-667. https://doi.org/10.1038/s41575-021-00440-6. (In English).

27. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods / B.H. Nataraj et al // Microb. Cell Factories. – 2020. – 19. – R. 1-22. https://doi.org/10.1186/S12934-020-01426-W/TABLES/2. (In English).

28. Selection of wild lactic acid bacteria strains as promoters of postbiotics in gluten-free sourdoughs / B. Păcularu-Burada et al // Microorganisms. – 2002. – 8. – R. 643. https://doi.org/10.3390/MICROORGANISMS8050643. (In English).

29. Liquid and firm sourdough fermentation: microbial robustness and interactions during consecutive backsloppings / V. Galli et al // M. LWT. – 2019. – № 105. – R. 9-15. https://doi.org/10.1016/J.LWT.2019.02.004. (In English).

30. Corsetti A. Technology of sourdough fermentation and sourdough applications / A. Corsetti // Handbook on Sourdough Biotechnology. – 2013. – R. 85-103. https://doi.org/10.1007/978-1-4614-5425-0_4. (In English).

31. De Vuyst L. Microbial ecology and process technology of sourdough fermentation / L. De Vuyst, S. Van Kerrebroeck, F. Leroy // Adv. Appl. Microbiol. – 2017. – № 100. – R. 49-160. https://doi.org/10.1016/BS.AAMBS.2017.02.003. (In English).

32. Sourdough Bread / K. Papadimitriou et al // Innovations in Traditional Foods. – 2019. – R. 127-158. https://doi.org/10.1016/B978-0-12-814887-7.00006-X. (In English).

33. Preedy V.R. Flour and breads and their fortification in health and disease prevention / V.R. Preedy, R.R. Watson // Academic Press. – 2019. https://doi.org/10.1016/C2017-0-01593-8. (In English).

34. Sensory and physicochemical characterization of sourdough bread prepared with a coconut water kefir starter / M. Limbad et al // Foods. – 2020. – № 9. – 1165 r. https://doi.org/10.3390/FOODS9091165. (In English).

35. Chavan R.S. Sourdough technology – a traditional way for wholesome foods: a review / R.S. Chavan, S.R. Chavan // Compr. Rev. Food Sci. Food Saf. – 2011. – № 10. – R. 169-182. https://doi.org/10.1111/J.1541-4337.2011.00148.X. (In English).

36. Yeast biodiversity in fermented Doughs and raw cereal matrices and the study of technological traits of selected strains isolated in Spain / R. Chiva et al // Microorganisms. – 2021. – R. 9-47. https://doi.org/10.3390/MICROORGANISMS9010047. (In English).

37. Characterization and selection of functional yeast strains during sourdough fermentation of different cereal wholegrain flours / M. Palla et al // Sci. Rep. – 2020. – № 10. – R. 12856-12815. https://doi.org/10.1038/s41598-020-69774-6. (In English).

38. Fungal species diversity in French bread sourdoughs made of organic wheat flour / S. Urien et al // Front. Microbiol. – 2019 – № 10. – R. 201. https://doi.org/10.3389/fmicb.2019.00201. (In English).

39. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation / M.N. Rezaei et al // Int. J. Food Microbiol. – 2015. – № 204. – R. 24-32. https://doi.org/10.1016/J.IJFOODMICRO.2015.03.004. (In English).

40. De Vuyst L. Sourdough production: fermentation strategies, microbial ecology, and use of nonflour ingredients / L. De Vuyst, A. Comasio, S.V. Kerrebroeck // Crit. Rev. Food Sci. – 2021. – R. 1-33. https://doi.org/10.1080/10408398.2021.1976100. (In English).

41. Pico J. Wheat bread aroma compounds in crumb and crust: a review / J. Pico, J. Bernal, M. Gómez // Food Res. Int. – 2015. – № 75. – R. 200-215. https://doi.org/10.1016/J.FOODRES.2015.05.051. (In English).

42. Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor / V.B. Jayaram et al // Food Chem. – 2013. – № 136. – R. 301-308. https://doi.org/10.1016/J.FOODCHEM.2012.08.039. (In English).

43. Wang T. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: a concise review / T. Wang, F. He, G. Chen // J. Funct. Foods. – 2014. – 7. – R. 101-111. https://doi.org/10.1016/J.JFF.2014.01.033. (In English).

44. De Vuyst L. The sourdough microflora: biodiversity and metabolic interactions / L. De Vuyst, and P. Neysens // Trends Food Sci. Technol. – 2005. – 16. – R. 43-56. https://doi.org/10.1016/J.TIFS.2004.02.012. (In English).

45. Effect of different breadmaking methods on thiamine, riboflavin and pyridoxine contents of wheat bread / F. Batifoulier et al // J. Cereal Sci. – 2005. – 42. – R. 101-108. https://doi.org/10.1016/J.JCS.2005.03.003. (In English).

46. Kaur P. Yeast phytases: present scenario and future perspectives / P. Kaur, G. Kunze, T. Satyanarayana // Crit. Rev. Biotechnol. – 2008. – 27. – R. 93-109. https://doi.org/10.1080/07388550701334519. (In English).

47. Application of the selected antifungal LAB isolate as a protective starter culture in pan wholewheat sourdough bread / A. Sadeghi et al // Food Control. – 2019. – 95. – R. 298-307. https://doi.org/10.1016/J.FOODCONT.2018.08.013. (In English).

48. Petrova P. Lactic acid fermentation of cereals and Pseudocereals: ancient nutritional biotechnologies with modern applications / P. Petrova, K. Petrov // Nutrients – 2020. – 12. – R. 1118. https://doi.org/10.3390/NU12041118. (In English).

49. Paraprobiotics: evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods / C.N. de Almada et al // Trends Food Sci. Technol. – 2016. – 58. – R. 96-114. https://doi.org/10.1016/J.TIFS.2016.09.011. (In English).

50. Viability of Lactobacillus plantarum P8 in bread during baking and storage. / L. Zhang et al. – 2016. – R. 7-10. (In English).

51. Effect of baking conditions and storage on the viability of Lactobacillus plantarum supplemented to bread / L. Zhang et al // LWT 87. – 2018. – R. 318-325. https://doi.org/10.1016/J.LWT.2017.09.005. (In English).

52. Turkish journal of agriculture-food science and technology survival survey of lactobacillus acidophilus in additional probiotic bread / T. Duc Thang et al // J. Agric.-Food Sci. Technol. – 2019. – 7. – R. 588-592. https://doi.org/10.24925/turjaf.v7i4.588-592.2247. (In English).

53. Impact of par-baking and packaging on the microbial quality of par-baked wheat and sourdough bread / E. Debonne et al // Food Control. – 2018. – 91. – R. 12-19. https://doi.org/10.1016/J.FOODCONT.2018.03.033. (In English).

54. Păcularu-Burada B. Current approaches in sourdough production with valuable characteristics for technological and functional applications / B. Păcularu-Burada, L.A. Georgescu, G.E. Bahrim // The annals of the university Dunarea de Jos of Galati. Fascicle VI Food Technol. – 2020. – 44. – R. 132-148. https://doi.org/10.35219/FOODTECHNOLOGY.2020.1.08. (In English).

55. Control of spoilage fungi by protective lactic acid bacteria displaying probiotic properties / K.K. Varsha et al // Appl. Biochem. Biotechnol. – 2014. –172. – R. 3402-3413. https://doi.org/10.1007/S12010-014-0779-4. (In English).

56. Sourdough bread: starch digestibility and postprandial glycemic response / F. Scazzina et al // J. Cereal Sci. – 2009. – № 49. – R. 419-421. https://doi.org/10.1016/J.JCS.2008.12.008. (In English).

57. The acute impact of ingestion of breads of varying composition on blood glucose, insulin and incretins following first and second meals / A.M. Najjar et al // Br. J. Nutr. – 2008. – № 101. – R. 391-398. https://doi.org/10.1017/S0007114508003085. (In English).

58. Sourdough fermentation of wholemeal wheat bread increases solubility of arabinoxylan and protein and decreases postprandial glucose and insulin responses / J. Lappi et al // J. Cereal Sci. – 2010. – № 51. – R. 152-158. https://doi.org/10.1016/J.JCS.2009.11.006. (In English).

59. Whole grain wheat sourdough bread does not affect plasminogen activator inhibitor-1 in adults with normal or impaired carbohydrate metabolism / K.A. MacKay et al // Nutr. Metab. Cardiovasc. Dis. – 2012. – № 22. – R. 704-711. https://doi.org/10.1016/J.NUMECD.2010.10.018. (In English).

60. Impact of sourdough fermentation on appetite and postprandial metabolic responses – a randomised cross-over trial with whole grain rye crispbread / G. Zamaratskaia et al // Br. J. Nutr. – 2017. – № 118. – R. 686-697. https://doi.org/10.1017/S000711451700263X. (In English).

61. Sourdough fermented breads are more digestible than Those started with Baker’s yeast alone: an in vivo challenge dissecting distinct gastrointestinal responses / C.G. Rizzello et al // Nutrients. – 2019. – № 11. – R. 2954. https://doi.org/10.3390/NU11122954. (In English).

62. Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac Sprue patients / R. Di Cagno et al // Appl. Environ. Microbiol. – 2004. – № 70. – R. 1088-1096. https://doi.org/10.1128/AEM.70.2.1088-1096.2004. (In English).

63. Randomised clinical trial: low-FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome / R. Laatikainen et al // Aliment. Pharmacol. Ther. – 2016. – № 44. – R. 460-470. https://doi.org/10.1111/APT.13726. (In English).

64. Pilot study: comparison of sourdough wheat bread and yeast-fermented wheat bread in individuals with wheat sensitivity and irritable bowel syndrome / R. Laatikainen et al // Nutrients. – 2017. – № 9. – R. 1215. https://doi.org/10.3390/NU9111215. (In English).

65. Dieta s ponizhennym soderzhaniem fermentiruemykh oligo-, di-, monosakharidov i poliolov v lechenii patsientov s sindromom razdrazhennogo kishechnika: osnovnye printsipy i metodologiya primeneniya / R.O. Kuvaev i dr. // Voprosy pitaniya. – 2020. – Tom 89, № 6. – S. 38-47. (In Russian).


Review

For citations:


Umiralieva L.B., Оspanov A.B., Ismailova E.T., Filatov I.D. ANALYTICAL REVIEW OF MICROBIOLOGICAL ASPECTS OF PRODUCTION OF BIOLOGICAL PRODUCTS OF STARTERS FOR BAKING PASTRY BASED ON HIGHLY ACTIVE CULTURES OF MICROORGANISMS. Bulletin of Shakarim University. Technical Sciences. 2025;(3(19)):390-407. (In Russ.) https://doi.org/10.53360/2788-7995-2025-3(19)-45

Views: 590

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X