Preview

Шәкәрім Университетінің Хабаршысы. Техникалық ғылымдар сериясы

Кеңейтілген іздеу

КРЕМНИЙДІ (SIO2/SIOx/SI) ӘРТҮРЛІ ӘДІСТЕРМЕН ЕНГІЗУ АРҚЫЛЫ MXENE АРҚЫЛЫ АЛЫНҒАН МАТЕРИАЛДАРДЫ МОДИФИКАЦИЯЛАУ: СИНТЕЗ ӘДІСТЕРІН ЖӘНЕ БАЛАМА БЕТТІК МОДИФИКАЦИЯЛАРДЫ ӘЗІРЛЕУ

https://doi.org/10.53360/2788-7995-2025-3(19)-70

Толық мәтін:

Аңдатпа

MXene – өтпелі металдардың екі өлшемді карбидтері мен нитридтеріне жататын перспективалы материалдар класы. Олар жоғары электр өткізгіштік, үлкен беттік аудан, гидрофильділік және беткі құрамының икемділігі сияқты бірегей қасиеттердің үйлесімі арқасында кең ғылыми қызығушылыққа ие. Бұл қасиеттер MXene-ді энергия сақтау, сенсорлар, электрокатализ, сүзгілеу және қоршаған ортаны тазарту салаларында қолдануға мүмкіндік береді. Дегенмен, тотығуға бейімділік пен ұзақ мерзімді тұрақтылықтың жеткіліксіздігі оларды практикалық қолдануда шектейтін маңызды факторлар болып табылады.
Осы шектеулерді еңсеру мақсатында кремнийге негізделген модификациялар – атап айтқанда Si, SiO₂ және SiOx қолдану – MXene құрылымының тұрақтылығын арттырудың тиімді стратегиясы ретінде ұсынылуда. Бұл шолу кремнийқұрамды компоненттерді пайдалану арқылы жүзеге асырылатын функционализация әдістерін талдайды. Олардың қатарына сол-гель синтезі, Штебер әдісі, газ фазасындағы химиялық тұндыру (CVD), атом қабатын тұндыру (ALD) және бүрку тәсілдері жатады.
Кремниймен модификациялау материалдардың тотығуға төзімділігін, термиялық тұрақтылығын, беттік ауданын және композиттермен үйлесімділігін жақсартады. Мұндай жақсартылған қасиеттер кремнийлі MXene-дердің литий- және алюминий-ионды аккумуляторлар, суперконденсаторлар, сенсорлар мен катализаторлардағы өнімділігін арттырады. Сонымен қатар, олардың фотокатализ бен зиянды заттарды адсорбциялау қабілеті қоршаған ортаны қорғау технологияларында қолдануға мүмкіндік береді. Бұл шолу болашақта MXene материалдарын көпфункциялы жүйелерге біріктірудің тұрақты әрі масштабталатын әдістерін де қарастырады.

Авторлар туралы

М. Әліпұлы
Satbayev Univeristy
Қазақстан

Мұхтар Әліпұлы – «Материалтану, нанотехнология және инженерлік физика» кафедрасының докторанты

050013, Қазақстан Республикасы, Алматы қ., Сатпаев к-сі, 22 



Қ. Асқарұлы
Satbayev Univeristy
Қазақстан

Қыдыр Асқарұлы – техникалық ғылымдар докторы, қауымдастырылған профессор, «Жалпы физика» кафедрасы

050013, Қазақстан Республикасы, Алматы қ., Сатпаев к-сі, 22



Қ. Тоштай
Әл-Фараби атындағы Қазақ ұлттық университеті
Қазақстан

Қайнаубек Тоштай – доцент, «Физикалық химия, катализ және мұнай химиясы» кафедрасы

050040, Қазақстан Республикасы, Алматы қ., Әл-Фараби даңғ., 71



Н. Н. Нұрғалиев
Шәкәрім Университеті
Қазақстан

Нұржан Нұрлыбекұлы Нұрғалиев – PhD

071410, Қазақстан Республикасы, Семей қ., Глинки к-сі, 20А 



С. Азат
Satbayev Univeristy
Қазақстан

Сейтхан Азат - Профессор, Инженерлі бейімді зертхана жетекшісі

050013, Қазақстан Республикасы, Алматы қ., Сатпаев к-сі, 22



Әдебиет тізімі

1. Anasori B. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage / B. Anasori, M.R. Lukatskaya, Y. Gogotsi // Nature Reviews Materials. – 2017. – № 2. https://doi.org/10.1038/natrevmats.2016.98.

2. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3alc2 / M. Naguib et al // Advanced Materials. – 2011. – № 23. – Р. 4248-4253, https://doi.org/10.1002/adma.201102306.

3. A Review on MXene and Its’ Composites for Electromagnetic Interference (EMI) Shielding Applications / R. Verma et al // Carbon. – 2023. – № 208. – Р. 170-190. https://doi.org/10.1016/j.carbon.2023.03.050.

4. A Review on MXene Synthesis, Stability, and Photocatalytic Applications / G. Murali et al // ACS Nano. – 2022. – № 16. – Р. 13370-13429. https://doi.org/10.1021/acsnano.2c04750.

5. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) Based Biosensing and Molecular Imaging / H. Liu et al // Nanophotonics. – 2022. – № 11. – Р. 4977-4993. https://doi.org/10.1515/nanoph-2022-0550.

6. MXene Materials for Designing Advanced Separation Membranes / H.E. Karahan et al // Advanced Materials. – 2020. – № 32. https://doi.org/10.1002/adma.201906697.

7. Gogotsi Y. The Rise of MXenes. / Y. Gogotsi, B. Anasori // ACS Nano. – 2019. – № 13. – Р. 8491-8494. https://doi.org/10.1021/acsnano.9b06394.

8. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes) / C.J. Zhang et al // Chemistry of Materials. – 2017. – № 29. – Р. 4848-4856. https://doi.org/10.1021/acs.chemmater.7b00745.

9. Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na‐Ion Storage / М. Zhao et al // Advanced Materials. – 2017. – № 29. https://doi.org/10.1002/adma.201702410.

10. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) / М. Alhabeb et al // In MXenes; Jenny Stanford Publishing: New York, 2023. – Р. 415-449.

11. MXene Films: Scalable Manufacturing of Free‐Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity (Adv. Mater. 23/2020) / J. Zhang et al // Advanced Materials. – 2020. – № 32. https://doi.org/10.1002/adma.202070180.

12. Enhanced Cycling Performance of Si-MXene Nanohybrids as Anode for High Performance Lithium Ion Batteries / X. Zhu et al // Chemical Engineering Journal. – 2019. – № 378. – Р. 122212. https://doi.org/10.1016/j.cej.2019.122212.

13. Three‐dimensional Structured MXene/SiO2 for Improving the Interfacial Properties of Composites by Self‐assembly Strategy / J. Guo et al // Polymer Composites. – 2021. – № 43. – Р. 84-93. https://doi.org/10.1002/pc.26358.

14. Burgeoning Silicon/MXene Nanocomposites for Lithium Ion Batteries: A Review / Р. Zhang et al // Advanced Functional Materials. – 2024. – № 34. https://doi.org/10.1002/adfm.202402307.

15. Three‐dimensional Structured MXene/SiO2 for Improving the Interfacial Properties of Composites by Self‐assembly Strategy / J. Guo et al // Polymer Composites. – № 43. – Р. 84-93. https://doi.org/10.1002/pc.26358.

16. Design of PDMS/SiO2@MXene Composites with «Floatable Interlayer» Structure for the Electromagnetic Shielding Behavior Improvement / Y. Duan et al // Chemical Engineering Journal. – 2023. – № 461. – Р. 141853. https://doi.org/10.1016/j.cej.2023.141853.

17. Ultralong Stability of Ti3C2Tx‐MXene Dispersion Through Synergistic Regulation of Storage Environment and Defect Capping with Tris‐HCl Buffering / J. Tan et al // Small Methods. – 2024. https://doi.org/10.1002/smtd.202301689.

18. MXene Hydrogels: Fundamentals and Applications / Y.-Z. Zhang et al // Chemical Society Reviews. – 2020. – № 49. – Р. 7229-7251. https://doi.org/10.1039/d0cs00022a.

19. MXene Printing and Patterned Coating for Device Applications / Y. Zhang et al // Advanced Materials. – 2020. – № 32. https://doi.org/10.1002/adma.201908486.

20. Applications of 2D MXenes in Energy Conversion and Storage Systems / J. Pang et al // Chemical Society Reviews. – 2019. – № 48. – Р. 72-133. https://doi.org/10.1039/c8cs00324f.

21. Highly Electrically Conductive Three-Dimensional Ti3C2Tx MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances / S. Zhao et al // ACS Nano. – 2018. – № 12. – Р. 11193-11202. https://doi.org/10.1021/acsnano.8b05739.

22. Geng X. Application of MXene‐Based Materials for Cathode in Lithium‐Sulfur Batteries / X. Geng, L. Yang, P. Song // Chemistry – A European Journal. – 2024. – № 30. https://doi.org/10.1002/chem.202303451.

23. Mozafari M. Surface Functionalization of MXenes // M. Mozafari, M. Soroush // Materials Advances. – 2021. – № 2. – Р. 7277-7307. https://doi.org/10.1039/d1ma00625h.

24. A Review of Porous Carbons Produced by Template Methods for Supercapacitor Applications / W. Zhang et al // New Carbon Materials. – 2021. – № 36. – Р. 69-81. https://doi.org/10.1016/s1872-5805(21)60005-7.

25. Jiang T. Enhanced Performance of Silicon Negative Electrodes Composited with Titanium Carbide Based MXenes for Lithium-Ion Batteries / T. Jiang, H. Yang, G.Z. Chen // Nanoenergy Advances. – 2022. – № 2. – Р. 165-196. https://doi.org/10.3390/nanoenergyadv2020007.

26. Solution Reactivity Studies for Identification of Promising New ALD and Pulsed CVD Reaction Chemistries / В. Vidjayacoumar et al // ECS Transactions. – 2013. – № 50. – Р. 53-66. https://doi.org/10.1149/05013.0053ecst.

27. Stoldt C.R. Ultra-Thin Film Encapsulation Processes for Micro-Electro-Mechanical Devices and Systems / C.R. Stoldt, V.M. Bright // Journal of Physics D: Applied Physics. – 2006. – № 39. – Р. R163-R170. https://doi.org/10.1088/0022-3727/39/9/r01.

28. Shielding 2D MXenes against Oxidative Degradation: Recent Advances, Factors and Preventive Measures / S. Kumar et al // Journal of Materials Chemistry C. – 2024. – № 12. – Р. 8243-8281. https://doi.org/10.1039/d4tc00884g.

29. MXene-Coated Ion-Selective Electrode Sensors for Highly Stable and Selective Lithium Dynamics Monitoring / Y. Huang et al // Environmental Science & Technology. – 2023. – № 58. – Р. 1359-1368. https://doi.org/10.1021/acs.est.3c06235.

30. Sustainable MXene Synthesis via Molten Salt Method and Nano-Silicon Coating for Enhanced Lithium-Ion Battery Performance / H. Kim et al // Molecules. – 2025. – № 30. – Р. 812. https://doi.org/10.3390/molecules30040812.

31. A Flexible Si@C Electrode with Excellent Stability Employing an MXene as a Multifunctional Binder for Lithium‐Ion Batteries / Р. Zhang et al // ChemSusChem. – 2019. – № 13. – Р. 1621-1628. https://doi.org/10.1002/cssc.201901497.

32. Recent Progress in Si/Ti3C2Tx MXene Anode Materials for Lithium-Ion Batteries / Х. Jiang et al // iScience. – 2024. – № 27. – Р. 111217. https://doi.org/10.1016/j.isci.2024.111217.

33. Performance and Application of Si/Ti3C2TX (MXene) Composites in Lithium Ion Battery / T. Jiang et al // Journal of Physics: Energy. – 2023. – № 5. – Р. 014020. https://doi.org/10.1088/2515-7655/acb6b4.

34. Rice Husk Waste into Various Template-Engineered Mesoporous Silica Materials for Different Applications: A Comprehensive Review on Recent Developments / A.G. Gebretatios et al // Chemosphere. – 2023. – № 310. – Р. 136843. https://doi.org/10.1016/j.chemosphere.2022.136843.

35. Sustainable Harnessing of SiO2 Nanoparticles from Rice Husks: A Review of the Best Synthesis and Applications / А. Rodriguez-Otero et al // Processes. – 2023. – № 11. – Р. 3373. https://doi.org/10.3390/pr11123373.

36. Mesoporous Silica with an Alveolar Construction Obtained by Eco-Friendly Treatment of Rice Husks / М. Popova et al // Molecules. – 2024. – № 29. – Р. 3540. https://doi.org/10.3390/molecules29153540.

37. Covalent Stabilization and Functionalization of MXene via Silylation Reactions with Improved Surface Properties / J. Ji et al // FlatChem. – 2019. – № 17. – Р. 100128. https://doi.org/10.1016/j.flatc.2019.100128.

38. Surface Modification of a MXene by an Aminosilane Coupling Agent / Н. Riazi et al // Advanced Materials Interfaces. – 2020. – № 7. https://doi.org/10.1002/admi.201902008.

39. Mozafari, M.; Soroush, M. Surface Functionalization of MXenes / M. Mozafari, M. Soroush // Materials Advances. – 2021. – № 2. – Р. 7277-7307. https://doi.org/10.1039/d1ma00625h.

40. Interfacial Charge Transfer and Interaction in the MXene/TiO2 Heterostructures Available / L. Xu et al; online: https://arxiv.org/abs/2107.09180.

41. Recent Developments in Photocatalytic Water Treatment Technology with MXene Material: A Review / N. Xu et al // Chemical Engineering Journal Advances. – 2022. – № 12. – Р. 100418. https://doi.org/10.1016/j.ceja.2022.100418.

42. MXene-Based Composite Photocatalysts for Efficient Degradation of Antibiotics in Wastewater / M. Akbari et al // Scientific Reports. – 2024. – № 14. https://doi.org/10.1038/s41598-024-83333-3.

43. MXene-Based Flexible Sensors: A Review / S. Hajian et al // Frontiers in Sensors. – 2022. – № 3. https://doi.org/10.3389/fsens.2022.1006749.

44. Recent Progress in MXene-Based Materials for Water Treatment Application: A Review / L. Song et al // Journal of Water Process Engineering. – 2025. – № 72. – Р. 107640. https://doi.org/10.1016/j.jwpe.2025.107640.

45. Engineering the next Generation of MXenes: Challenges and Strategies for Scalable Production and Enhanced Performance / W. Bao et al // Nanoscale. – 2025. – № 17. – Р. 6204-6265. https://doi.org/10.1039/d4nr04560b.

46. Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review / I.A. Vasyukova et al // Nanomaterials. – 2022. – № 12. – Р. 1797. https://doi.org/10.3390/nano12111797.

47. MXenes for Sustainable Energy: A Comprehensive Review on Conservation and Storage Applications / М. Jussambayev et al // Carbon Trends. – 2025. – № 19. – Р. 100471. https://doi.org/10.1016/j.cartre.2025.100471.


Рецензия

Дәйектеу үшін:


Әліпұлы М., Асқарұлы Қ., Тоштай Қ., Нұрғалиев Н.Н., Азат С. КРЕМНИЙДІ (SIO2/SIOx/SI) ӘРТҮРЛІ ӘДІСТЕРМЕН ЕНГІЗУ АРҚЫЛЫ MXENE АРҚЫЛЫ АЛЫНҒАН МАТЕРИАЛДАРДЫ МОДИФИКАЦИЯЛАУ: СИНТЕЗ ӘДІСТЕРІН ЖӘНЕ БАЛАМА БЕТТІК МОДИФИКАЦИЯЛАРДЫ ӘЗІРЛЕУ. Шәкәрім Университетінің Хабаршысы. Техникалық ғылымдар сериясы. 2025;(3(19)):634-646. https://doi.org/10.53360/2788-7995-2025-3(19)-70

For citation:


Alipuly M., Askaruly K., Toshtay K., Nurgaliyev N.N., Azat S. MODIFICATION OF MXENE-BASED MATERIALS THROUGH THE INTRODUCTION OF SILICON (SIO2/SIOx/SI) BY VARIOUS METHODS: DEVELOPMENT OF SYNTHESIS TECHNIQUES AND ALTERNATIVE SURFACE MODIFICATION STRATEGIES. Bulletin of Shakarim University. Technical Sciences. 2025;(3(19)):634-646. (In Kazakh) https://doi.org/10.53360/2788-7995-2025-3(19)-70

Қараулар: 11


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X