EFFECTS OF PHYTOREMEDIATION ON ENZYMATIC ACTIVITY AND FERTILITY RESTORATION IN CADMIUM-CONTAMINATED SOIL
https://doi.org/10.53360/2788-7995-2025-1(17)-50
Abstract
This study is dedicated to the investigation of phytoremediation of cadmium-contaminated soil using carrot (Daucus carota L.) and vermicompost. The paper discusses methods for modeling soil contamination and determining cadmium translocation in plants, as well as the impact of phytoremediation on the activity of soil enzymes, such as catalase, urease, dehydrogenase, and protease. The experiment showed that Daucus carota L. effectively accumulates cadmium in the roots, especially at high concentrations of contamination. The introduction of vermicompost into the soil helps reduce cadmium accumulation in the plant, which may be related to the improvement of soil structure and its ability to neutralize toxic substances. Furthermore, the addition of vermicompost helps maintain higher levels of soil enzyme activity, alleviating the toxic effects of cadmium on microorganisms and the soil ecosystem. The results of the study confirm that carrots (Daucus carota L.), as a phytoremediant, in combination with vermicompost can be used to clean the soil of pollutants (Cd) and restore its biological activity.
About the Authors
D. Kh. YuldashbekKazakhstan
Davlat Khasanuly Yuldashbek – Master of Chemistry
016200,Turkestan, 29/3 Sattarkhanov Avenue
D. K. Sunakbaeva
Kazakhstan
Dilara Kakharovna Sunakbaeva – candidate of technical sciences
016200,Turkestan, 29/3 Sattarkhanov Avenue
References
1. Clemens S. Safer food through plant science: reducing toxic element accumulation in crops / S. Clemens // Journal of Experimental Botany. – 2019. – V. 70, Iss. 20. – P. 5537-5557. https://doi.org/10.1093/jxb/erz366.
2. Effect of cadmium accumulation on mineral nutrient levels in vegetable crops: potential implications for human health / D. Yang et al // Environ Sci Pollut Res Int. – 2016. – V. 23(19). – Р. 19744-53. https://doi.org/10.1007/s11356-016-7186-z.
3. Chellaiah E.R. Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview / E.R. Chellaiah // Appl. Water Sci. – 2018. – V. 8, 154. https://doi.org/10.1007/s13201-0180796-5.
4. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cusmelter / B. Chen et al // Sci. Total Environ. – 2016. – V. 539. – P. 17-25.
5. Agricultural Strategies to Reduce Cadmium Accumulation in Crops for Food Safety / S. Mubeen et al // Agriculture. – 2023. – V. 13, № 471. https://doi.org/10.3390/agriculture13020471.
6. Kubier A. Cadmium in soils and groundwater: a review / A. Kubier, R.T. Wilkin, T. Pichler // Appl. Geochem. – 2019. – V. 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388.
7. Jali P. Effects of cadmium toxicity in plants: a review article / P. Jali, C. Pradhan, A.B. Das // Sch. Acad. J. Biosci. – 2016. – V. 4. – P. 1074-1081. https://doi.org/10.21276/sajb.2016.4.12.3.
8. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms / S.M. Gallego et al // Environ. Exp. Bot. – 2012. – V. 83. P. 33-46.
9. Cadmium minimization in wheat: a critical review / М. Rizwan et al // Ecotoxicol. Environ. Saf. – 2016. – V. 130. – P. 43-53.
10. Bioaccumulation and Health Risk Assessment of Heavy Metals in the Soil-Rice System in a Typical Seleniferous Area in Central China / C. Chang et al // Environ Toxicol Chem. – 2019. – V. 38(7). – Р. 1577-1584. https://doi.org/10.1002/etc.4443. PMID: 30994945.
11. Phylogenetic variation in heavy metal accumulation in angiosperms / M.R. Broadley et al // New Phytol. – 2001. – V. 152(1). Р. – 9-27. https://doi.org/10.1046/j.0028-646x.2001.00238.x.
12. Plant science: the key to preventing slow cadmium poisoning / S. Clemens et al // Trends Plant Sci. – 2013. – V. 18(2). – Р. 92-9. https://doi.org/10.1016/j.tplants.2012.08.003.
13. Effect of bovine bone meal on immobilization remediation and fertility of Cd contaminated soil / Y. Ji et al // Acta Sci. Circumstantiae. – 2019. – V. 39. – P. 1645-1654.
14. Soo H. Removal of heavy metals in contaminated soil by phytoremediation mechanism: A review. / H. Soo, H. Tony // Water Air Soil Pollut. – 2020. – V. 231. – P. 2638-2647.
15. Heavy mental concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi / K .Liu et al // China. Chemosphere. – 2020. – V. 251. – Р. 126415.
16. Trifolium repens L. regulated phytoremediation of heavy mental contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms / Н. Lin et al // J. Hazard. Mater. – 2021. – V. 402. – Р. 123829.
17. The role of urban park’s tree stand in shaping the enzymatic activity, glomalin content and physicochemical properties of soil / J. Lemanowicz et al // Sci. Total Environ. – 2020. – V. 741. – Р. 140446.
18. Effects of exogenous Cd on microbial biomass and enzyme activity in red paddy soil / В. Guo et al // J. Agro-Environ. Sci. – 2018. – V. 37. – P. 1850-1855.
19. Effects of oxalic acid on oil sunflower biomass, enzyme activity, and the Cd speciation of Cdpolluted soils / Y. Han et al // J. Agro-Environ. Sci. – 2020. – V. 39. – P. 1964-1973.
20. Guo X. Repairation of Five Species of Herbaceous Plants to Lead (Pb) Pollution in Mining Soil / X. Guo // Shanxi Normal University: Linfen, China, 2015.
21. Remediation techniques for heavy metal-contaminated soils: Principles and applicability / L. Liu et al // Sci. Total Environ. – 2018. – V. 633. – P. 206-219.
22. Effects of cadmium and copper mixtures to carrot and pakchoi under greenhouse cultivation condition / S. Hou et al // Ecotoxicol. Environ. Saf. – 2018. – V. 159. – P. 172-181.
23. Root vegetables-Composition, health effects, and contaminants / E. Knez et al // Int. J. Environ. Res. Public Health. – 2022. – V. 19. – Р. 15531.
24. Roy M. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils / M. Roy, L.M. McDonald // Land Degrad. Dev. – 2015. – V. 26. – P. 785-792.
25. Land application of organic waste effects on the soil ecosystem / М. Oldare et al // J. Appl Energy. – 2011. – V. 88. – P. 2210-2218.
26. Muhammad S. Compost and P amendments for stimulating microorganisms and maize growth in a saline soil from Pakistan in comparison with a nonsaline soil from Germany / S. Muhammad, T. Mu¨ller, R.G. Joergensen // J Plant Nutr Soil Sci. – 2007. – V. 170. – P. 745-751.
27. Use of compost an environment friendly technology for enhancing rice wheat production in Pakistan / G. Sarwar et al // Pak J Bot. – 2007. – V. 39. – P. 1553-1558.
28. Amend ments and plant cover influence on trace element pools in a contaminated soil / А. Pe´rezde-Mora et al // Geoderma. – 2007. – V. 139. – P. 1-10.
29. Direct and secondary effect of liming and organic fertilization on cadmium content in soil and in vegetables / А. Zaniewicz-Bajkowska et al // Plant Soil Environ. – 2007. – V. 53. – P. 473-481.
30. The Influence of Vermicompost and Various Concentrations of Lead on the Enzymatic Activity of Sierozem Soils of Kazakhstan / G.A. Sainova et al // Scientifica (Cairo). – 2023. – Р. 8490234. https://doi.org/10.1155/2023/8490234.
31. Yuldashbek D.Kh. The effect of zinc on the activity of the enzyme dehydrogenase in sierozem / D.Kh. Yuldashbek. // Bulletin of Shakarim University. Technical Sciences, 2024. – № 1(13). – P. 393400. https://doi.org/10.53360/2788-7995-2024-1(13)-48.
32. Khaziev F.H. Methods of Soil Enzymology / F.H. Khaziev. – M.: Science, London, UK, 2005.
Review
For citations:
Yuldashbek D.Kh., Sunakbaeva D.K. EFFECTS OF PHYTOREMEDIATION ON ENZYMATIC ACTIVITY AND FERTILITY RESTORATION IN CADMIUM-CONTAMINATED SOIL. Bulletin of Shakarim University. Technical Sciences. 2025;(1(17)):403-412. https://doi.org/10.53360/2788-7995-2025-1(17)-50