USING AI TO PREVENT EMAIL PHISHING ATTACKS
https://doi.org/10.53360/2788-7995-2024-4(16)-8
Abstract
This article examines the current problems and the devastating effects of phishing email attacks. The importance of preventive measures to protect organizations from data leakage and potential catastrophic consequences is emphasized. The main types of phishing attacks and the need to implement solutions based on artificial intelligence (AI) to effectively reduce risks are described. The work used methods for recognizing early signs of phishing using artificial intelligence and machine learning. Python and Google Colab were used for development, which made it possible to effectively analyze data and train models. Special attention was paid to the development of unique methods and the use of modern software. As a result of the study, data were obtained confirming the high effectiveness of AI tools in recognizing phishing attacks. Artificial intelligence technologies have significantly improved the accuracy of phishing detection and supported adaptation to new cyber threats. The analysis shows that the use of AI allows not only to detect attacks in a timely manner, but also to develop prevention strategies. The practical significance of the results lies in the possibility of integrating the developed methods into existing security systems. The work offers a strategic approach combining technological advances and organizational practices to create sustainable information security.
Keywords
About the Authors
A. B. KakenovaKazakhstan
Ayana Baygabulkyzy Kakenova – master of technical sciences
010008, Republic of Kazakhstan, Astana, street Satpayeva, 2
B. K. Abduraimova
Kazakhstan
Bayan Kuandykovna Abduraimova – candidate of technical sciences, associate professor
010008, Republic of Kazakhstan, Astana, street Satpayeva, 2
S. A. Santeeva
Kazakhstan
Saya Adilbekkyzy Santeeva – Phd
010008, Republic of Kazakhstan, Astana, street Satpayeva, 2
References
1. Abramov I.P. Ispol'zovanie iskusstvennogo intellekta v sistemakh fil'tratsii ehlektronnoi pochty. / I.P. Abramov, A.YU. Borodin // Informatsionnye tekhnologii i telekommunikatsii. – 2021. – № 1(32). – S. 59-66. (In Russian).
2. Malenkov M.G. Zashchita ot atak s ispol'zovaniem II s pomoshch'yu II / M.G. Malenkov // Innovatsii. Nauka. Obrazovanie. – 2021. – Tom 2, № 44. – S. 49-53. (In Russian).
3. Isakov A.A. Iskusstvennyi intellekt i rassledovanie kiberprestuplenii / A.A. Iskakov // Vestnik nauki. – 2023. – № 5(62). – S. 597-603. (In Russian).
4. Trofimov A.I. Ispol'zovanie metodov iskusstvennogo intellekta dlya bor'by s fishingom i spamom v ehlektronnoi pochte / A.I. Trofimov // Komp'yuternye instrumenty v obrazovanii. – 2022. – № 26(1). – S. 49-55. (In Russian).
5. Mironov A.A. Primenenie metodov mashinnogo obucheniya i iskusstvennogo intellekta dlya zashchity ot spama i fishinga / A.A. Mironov // Sistemy i instrumenty informatiki. – 2020. – № 30(2). – S. 57-69. (In Russian).
6. Sharma A. Email Spam Filtering Using Machine Learning Algorithms: A Review. / A. Sharma, R. // Gupta In Advances in Computer Vision & Image Processing. – 2021. – Vol. 2. – R. 137-145. (In English).
7. Pozhogin A. Problemy oblachnoi pochty: spam, fishing i vredonosnoe PO [ehlektronnyi resurs] https://blog.kaspersky.kz/spam-phishing-malware/1804/. (In Russian).
8. Sh.Drew, Phishing-Detection, [elektronnyj resurs] https://github.com/shaeferd/PhishingDetection/. (In English).
9. Kuznetsov D.A. Ispol'zovanie neironnykh setei dlya fil'tratsii fishinga / D.A. Kuznetsov // Zhurnal informatsionnykh sistem. – 2023. – № 6(41). – S. 110-118. (In Russian).
10. Vasil'ev R.N. Analiz ehffektivnosti algoritmov klassifikatsii ehlektronnoi pochty / R.N. Vasil'ev, I.K. Petrova // Tekhnologii zashchity informatsii. – 2023. – № 2(39). – S. 66-73. (In Russian)
11.
Review
For citations:
Kakenova A.B., Abduraimova B.K., Santeeva S.A. USING AI TO PREVENT EMAIL PHISHING ATTACKS. Bulletin of Shakarim University. Technical Sciences. 2024;1(4(16)):57-65. (In Kazakh) https://doi.org/10.53360/2788-7995-2024-4(16)-8