STUDY OF CONTROL ALGORITHMS FOR ROBOT MANIPULATOR USING MACHINE VISION TECHNOLOGIES
https://doi.org/10.53360/2788-7995-2025-1(17)-1
Abstract
This article presents a study of algorithms using machine vision to control a robot manipulator. With the increasing number of robots used in industry and other industries, the need for reliable and accurate control algorithms has increased. Thus, the relevance of the topic increases, and research in this area can significantly improve the efficiency and safety of robotic systems. The purpose of this article is a comprehensive study of various control algorithms, as well as the integration of machine vision into control systems.
Robot manipulator control algorithms are a set of mathematical procedures and methods that allow robots to perform certain movements and tasks with the necessary efficiency and accuracy. To do this, the robot receives important data about the world around it using machine vision. The article considers three main types of algorithms: inverse kinematics, PID controllers and machine learning algorithms. Reverse kinematics determines the angles of rotation of the robot joints, which are necessary to achieve a given position and orientation of the working tool. The PID controller controls the movements of the robot's joints. By controlling the speed and force, it corrects errors between the actual and the set position. Using machine learning methods allows you to learn new tasks and adapt your behavior to changing conditions.
Within the framework of this study, the theoretical aspects of algorithms and machine vision will be considered. The research was carried out on the Optima 2 manipulator manufactured by ZARNITZA.
About the Authors
D. Sh. MusinaKazakhstan
Darina Musina – Master's student of the Department of IT Technologies
071412, Semey, 20 A Glinka Street
D. O. Kozhakhmetova
Dinara Kozhakhmetova – Associate Professor of the Department of IT Technologies, Doctor of Philosophy PhD
071412, Semey, 20 A Glinka Street
E. A. Ospanov
Yerbol Ospanov – Associate Professor of the Department of IT Technologies, Doctor of Philosophy PhD
071412, Semey, 20 A Glinka Street
T. S. Zhylkybayev
Tursynkhan Zhylkybayev – Master of Technical Sciences, lecturer of the Department of IT Technologies
071412, Semey, 20 A Glinka Street
References
1. Neural Control for Image Stabilisation Using a Reference Model / G. Balbayev et al // International Journal of Mechanical Engineering and Robotics Research. ‒ 2021. ‒ vol. 10, № 1. ‒ P. 17-21. (In English).
2. Recent Advances of Generative Adversarial Networks in Computer Visionin / Yang-Jie Cao et al // IEEE Access. ‒ 2019. ‒ vol. № 7. ‒ P. 14985-15006. (In English).
3. Rakhmetova P.M. Issledovanie sistemy upravleniya dvizheniem manipulyatora s pomoshch'yu komp'yuternogo zreniya / P.M. Rakhmetova, ZH.N. Isabekov, A.YU. Bektilevov. // Vestnik KaZATK. ‒ 2023. ‒ № 6(129). ‒ S. 319-326. (In Russian).
4. Koltygin D.S. Analiticheskii i chislennyi metody resheniya obratnoi zadachi kinematiki dlya robota Delta / D.S. Koltygin, I.A. Sedel'nikov, N.V. Petukhov // Vestn. Irkutskogo gos.tekhnicheskogo un-ta. ‒ 2017. ‒ T. 21, № 5(124). ‒ S. 87-95. (In Russian).
5. SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology / S. Dey et al // IEEE Access. ‒ 2019. ‒ vol. № 7. ‒ P. 157158-157172. (In English).
6. Deep Learning Approaches Based on Transformer Architectures for Image Captioning Tasks / R. Castro et al // IEEE Access. ‒ 2022. ‒ vol. № 10. ‒ P. 33679-33694. (In English).
7. Koltygin D.S. Metod i programma resheniya pryamoi i obratnoi zadachi kinematiki dlya upravleniya robotom-manipulyatorom / D.S. Koltygin, I.A. Sedel'nikov // Sistemy. Metody. Tekhnologii. ‒ 2020. ‒ № 4(48). ‒ S. 65-74. (In Russian).
8. Ang K.H. PID control system analysis, design, and technology. / K.H. Ang, G. Chong, Y. Li. // IEEE Transactions on Control Systems Technology. ‒ 2005. ‒ vol. № 13(4). ‒ P. 559-576. (In English).
9. Al-Khayyt S.Z.S. Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking / S.Z.S. Al-Khayyt // Al-Khwarizmi Engineering Journal. ‒ 2013. ‒ № 8(1). ‒ P. 19-28. (In English).
10. Podkhod k avtomaticheskomu prognozirovaniyu sostoyaniya promyshlennykh manipulyatorov s primeneniem metodov mashinnogo obucheniya / A.S. Goncharov i dr. // Doklady TUSUR. ‒ 2021. T. 24, № 1. ‒ S. 48-54. (In Russian).
11. Deep Reinforcement Learning for the Control of Robotic Manipulation: A Focussed Mini-Review / R. Liu et al // Robotics. ‒ 2021. ‒ Vol. № 10(1). ‒ P. 22-34. (In English).
12. Serebryakov M.YU. Glubokoe obuchenie s podkrepleniem v upravlenii manipulyatsionnymi robotami / M.YU. Serebryakov, S.V. Kolesova, A.A. Zinchenko // Izvestiya TuLGU. Tekhnicheskie nauki. ‒ 2022. ‒ № 9. ‒ S. 265-268. (In Russian).
Review
For citations:
Musina D.Sh., Kozhakhmetova D.O., Ospanov E.A., Zhylkybayev T.S. STUDY OF CONTROL ALGORITHMS FOR ROBOT MANIPULATOR USING MACHINE VISION TECHNOLOGIES. Bulletin of Shakarim University. Technical Sciences. 2025;(1(17)):5-12. (In Russ.) https://doi.org/10.53360/2788-7995-2025-1(17)-1