FEATURES OF OBTAINING BIOHYDROGEN FROM CARBOHYDRATE-CONTAINING WASTE OF PROCESSED GRAIN
Abstract
This article provides information about the main methods for producing biohydrogen, describes the mechanism of acid hydrolysis and dark fermentation of carbohydrate-containing raw materials. The main types of hydrogen-producing bacteria that carry out dark fermentation under anaerobic conditions are presented, where the advantages of Escherichia coli bacteria in the production of hydrogen are noted.
In addition, the description and the main results of studies on the production of biohydrogen, carried out with brewer's grains and post-alcohol grain stillage, where indicators of the ORP and pH of substrates with different concentrations of raw materials and conditions of pre-treatment were studied. Curves of changes in ORP over time were constructed, obtained from substrates with 4 % and 10 % concentrations of brewer's grains and distillery grain stillage under appropriate conditions for processing raw materials and using bacteria.
About the Authors
K. BekbayevKazakhstan
Б. Tolysbayev
Kazakhstan
А. Toleugazykyzy
Kazakhstan
References
1. Wood Ch., Rosentrater K., Muthukumarappan K., Gu Z. Quantification of physical and chemical properties, and identification of potentially valuable components from fuel ethanol process streams. Cereal Chem 2013;- 90 : 70e9.
2. Mussatto S. Brewers spent grain: a valuable feedstock for industrial aplications / Jour. Sci. Food Agric.94 (2014) 1264e1270.
3. Muthusamy N. Chemical composition of brewer spent grain. Intern. J. Sc. Environ. Techn. 3 (2014) 2109e2112.
4. Shah A., Favaro L., L. Alibardi, Cagnin L., A. Sandon, Cosu R., S. Casella, M. Basaglia. Bacillus spа. strains to produece biohydrogen from the organic fractionof municipal solid wastes. Apl. Energy 176 (2016) 116e124.
5. Liu K. Chemical composition of distillers grains, review. J. Agr. Food Chem. 2011; 59 : 1508e26.
6. Lamb J., Austbo B. Current use of bioenergy and hydrogen. In. Hydr., Biomass and Bioenergy 2020 Jan 1 (pp. 9-20). Acad. Press.
7. Dawood F., Anda M., Shafiullah G. Hydrogen production for energy: overview. Intern. Journ. of Hydrogen Energy. 2020 Feb 7;45 (7) : 3847-69.
8. Manish S., Banerjee R. Comparison of biohydrogen production processes. Intern. Journ. Hydrogen Energy 2008; 33 : 279-86.
9. Садраддинова Э. Р. Скрининг микробных сообществ продуцентов биоводорода / Э. Р. Садраддинова // Вестник биотехнологии и физико-химической биологии имени Ю. Овчинникова. – 2013. - Т. 9. - № 2. - С. 43-51.
10. Василов Р. Г. Перспективы развития производства биотоплив в России. Сообщение: биогаз / Р. Г. Василов // Вестник биотехнологии и физико-химической биологии имени Ю. Овчинникова. - 2007. - Т. 3. - № 3. - С.54-61.
11. Садраддинова Э. Р. Влияние различных факторов на эффективность процесса термофильной микробной конверсии органичеких отходов в биоводород / Э. Р. Садраддинова / Вестник биотехнологии и физико-химической биологии имени Ю. Овчинникова. – 2013. - Т. 9. - № 2 - С.52-62.
12. Никольская А. Каталитическиие системы получения водорода био-фотолизом воды: диссертация к. х. н. / А. Никольская: Москва, 2012. - 169 с.
13. Pang J., Wang A., Zheng M., Zhang T. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures // Chem Commun. - 2010. - Vol. 46. - Р. 6935-6937.
14. Palkovits R., Tajvidi K., Procelewska J., Rinaldi R. and Ruppert A. Hydrogenolysis of cellulose combining mineral acids and hydrogenation сatalysts // Green Chem. – 2010. – Vol. 12. – P. 972-978.
15. Palkovits R. Pentenoic acid pathways for cellulosic biofuels / Angew. Chem. Int. Ed. 2010. - Vol. 49. - No. 26. - Р. 4336-4338.
16. Palkovits R., Tajvidi K., Procelewska J., Ruppert A. Efficient conversion of cellulose to sugar alcohols combining acid and hydrogenation catalysts // From Abstracts of Papers, 241st ACS National Meeting & Exposition, Anaheim C. A., United States, March 27-31, 2011. - CELL-240.
17. Садраддинова Э. Р. Микробная переработка целлюлозосодержащего органического сырья в водород : дисс.к. б. / Э. Р. Садраддинова.: Москва, 2010. - 115 с.
18. Марков С. Биоводород; возможное использование водоррослей и бактерий для получения молекулярного водорода // Альтернативная энергетика и экология. - 2007. - Т 1. -№ 45. - С. 30-35.
19. Redwood M., Paterson-Bedle M., L. Macaskie. Integratting dark and light bio-hydrgen production strategiess:towards the hydrogen economy / Reviews in Env. Sc. and Biotechnology. - 2009. - V. 8 . - № 2. - P. 149-162.
20. Mirzoyan S., Toleugazykyzy A., Bekbayev K. S., Trchounian A. A., Trchounian K. Enhanced hydrogen gas production from mixture of beer spent grain and distiller's grain with glycerol by Es. coli. Intern. Journ. Hydrogen Energy 2020 ; 45 : 17233-17240.
21. Poladyan A., Trchounian K., Vasilian A., A. Trchounian. Hydrogen production by Es. coli using brewery wastes: Optimal pretreatment of waste and role of diferent hydrogenase. Renew Energy 2018; 115 : 931-6.
22. Mussatto S. I. Brewer's spent grains: a valuable fedstock for industrial aplications. Jor. Sci. Food Agriculture 2014; 94 : 1264-75.
23. Trchounian K., Pinske C., Sawers R. G., Trchounian A. A. Characterization of Es. coli [Ni Fe]-hydrogenase distribtion during fermentative growth at diferent pH. Cell Biochem. Biophys. 2012; 62 : 433-40.
24. Trchounian K., Trchounian A. A. Es.coli hydrogen gas prodction from glycerol: efects of external formate.Renew Energy 2015; 83 : 345-51.
25. Trchounian K., Sanchez-Tores V., Wood T., Trchounian A. Es. coli hydrogenase activity and H 2 production under glycerol fermentation at low pH. Int.Jour. Hydrogen Energy 2011; 36 : 4323-31.
26. Neidhard F. C., Ingraham J., Schaechter M. Physiology of the Bacterial Cel : A Molecular Approach. Sunderland:Sinauer; 1990 July
27. T. Maeda, V. Sanchez-Tores, T. Wood. Enhanced hydrogen production from gluccose by metabolicaly enginered E. coli. Appl.Microbiol. Biotech. 2007; 77 : 879-90.
28. Fernandez V. An electrochemical cel for reduction of biochemical:its aplication to the study of the efect pf pH and redox potential on the activity of hydrogenase. Analyt. Biochem 1983; 130 : 54-9.
29. Piskarev I., Ushkanov A., Aristova A., Likhachev P., Myslivets S. : Establishment of the redox potential of water saturated with hydrogen. Biophysics 2010; 55 : 13-7.
Review
For citations:
Bekbayev K., Tolysbayev , Toleugazykyzy А. FEATURES OF OBTAINING BIOHYDROGEN FROM CARBOHYDRATE-CONTAINING WASTE OF PROCESSED GRAIN. Bulletin of Shakarim University. Technical Sciences. 2020;(4(92)):158-162. (In Russ.)