Preview

Bulletin of Shakarim University. Technical Sciences

Advanced search

MODERN ACHIEVEMENTS IN THE USE OF CELLULOLYTIC MICROORGANISMS FOR PROCESSING LIGNOCELLULOSE BIOMASS

https://doi.org/10.53360/2788-7995-2024-4(16)-32

Abstract

Lignocellulose biomass (LCB) is an important resource for the production of biofuels and other highvalue products. The main components of LCB are cellulose and lignin, which are difficult to decompose. Recent research has focused on the use of cellulolytic microorganisms, such as Bacillus subtilis bacteria, Trichoderma reesei fungi and Penicillium oxalicum, to effectively break down these components. The article provides an overview of modern achievements, including the use of deep eutectic solvents (DES), which showed an improvement in the availability of cellulose and an increase in sugar yield up to 80%. The use of agro-industrial waste, such as rice straw, as a substrate for the production of enzymes, helps to reduce the cost of production and supports circular bioeconomics.
Strategies to increase the efficiency of enzymatic processing are described, including the development of multi-enzyme complexes and genetically modified strains of microorganisms. For example, the use of multifunctional enzymes from Clostridium cellulosi allowed to increase the yield of sugars by 30%. The possibilities of integrating mushroom co-cultures and hydrothermal processing methods that provide a synergistic effect in the processing of LCB are considered.
Special attention is paid to key enzymes such as cellulases, hemicellulases and ligninases and their role in the breakdown of plant polymers. Prospects for further research are discussed, including the development of thermostable enzymes, the introduction of environmentally friendly processing methods and the integration of new technologies into industrial biorefineries.

About the Authors

A. U. Issayeva
Shymkent University
Kazakhstan

Akmaral Umurbekovna Issayeva – Doctor of Biological Sciences, Professor. Director of the Research Institute of Ecology and Biology 

160031, Republic of Kazakhstan, Shymkent, Karatau district, Zhibek Zholy street, land plot № 6 



S. S. Karimova
Shymkent University
Kazakhstan

Saulet Sabitkhanovna Karimova – postdoctoral fellow, Senior Researcher at the Research Institute of Ecology and Biology 

160031, Republic of Kazakhstan, Shymkent, Karatau district, Zhibek Zholy street, land plot № 6 



A. I. Zhumadulaeva
Shymkent University
Kazakhstan

Alisa Issayevna Zhumadulayeva – Candidate of Agricultural Sciences, Senior Lecturer at the Department of Natural Sciences 

160031, Republic of Kazakhstan, Shymkent, Karatau district, Zhibek Zholy street, land plot № 6 



R. B. Aralbayeva
Shymkent University
Kazakhstan

Raykhan Burakhanovna Aralbayeva – Master's degree, Senior Lecturer at the Department of Natural Sciences 

160031, Republic of Kazakhstan, Shymkent, Karatau district, Zhibek Zholy street, land plot № 6 



S. B. Ashirbayeva
Shymkent University

Saltanat Bibatrovna Ashirbayeva – Master's degree, Senior Lecturer at the Department of Natural Sciences 

160031, Republic of Kazakhstan, Shymkent, Karatau district, Zhibek Zholy street, land plot № 6 



References

1. Sharma, V.; Tsai, M.-L.; Chen, C.-W.; Sun, P.-P.; Patel, A.K.; Singhania, R.R.; Nargotra, P.; Dong, C.-D. Deep Eutectic Solvents as Promising Pretreatment Agents for Sustainable Lignocellulosic Biorefineries: A Review. Bioresour. Technol. 2022, 360, 127631. [Google Scholar] [CrossRef]

2. Sharma, V.; Tsai, M.-L.; Nargotra, P.; Chen, C.-W.; Kuo, C.-H.; Sun, P.-P.; Dong, C.-D. Agro-Industrial Food Waste as a Low-Cost Substrate for Sustainable Production of Industrial Enzymes: A Critical Review. Catalysts 2022, 12, 1373. [Google Scholar] [CrossRef]

3. Awasthi, M.K.; Sindhu, R.; Sirohi, R.; Kumar, V.; Ahluwalia, V.; Binod, P.; Juneja, A.; Kumar, D.; Yan, B.; Sarsaiya, S.; et al. Agricultural Waste Biorefinery Development towards Circular Bioeconomy. Renew. Sustain. Energy Rev. 2022, 158, 112122. [Google Scholar] [CrossRef]

4. Rojas, L.F.; Zapata, P.; Ruiz-Tirado, L. Agro-Industrial Waste Enzymes: Perspectives in Circular Economy. Curr. Opin. Green Sustain. Chem. 2022, 34, 100585. [Google Scholar] [CrossRef]

5. Devi, A.; Bajar, S.; Kour, H.; Kothari, R.; Pant, D.; Singh, A. Lignocellulosic Biomass Valorization for Bioethanol Production: A Circular Bioeconomy Approach. Bioenergy Res. 2022. [Google Scholar] [CrossRef]

6. Devi, M.M.; Aggarwal, N.; Saravanamurugan, S. Rice Straw: A Major Renewable Lignocellulosic Biomass for Value-Added Carbonaceous Materials. Curr. Green Chem. 2020, 7, 290–303. [Google Scholar] [CrossRef]

7. Kaur, N.; Singh, G.; Khatri, M.; Arya, S.K. Review on Neoteric Biorefinery Systems from Detritus Lignocellulosic Biomass: A Profitable Approach. J. Clean. Prod. 2020, 256, 120607. [Google Scholar] [CrossRef]

8. Sharma, V.; Bhat, B.; Gupta, M.; Vaid, S.; Sharma, S.; Nargotra, P.; Singh, S.; Bajaj, B.K. Role of Systematic Biology in Biorefining of Lignocellulosic Residues for Biofuels and Chemicals Production. In Sustainable Biotechnology- Enzymatic Resources of Renewable Energy; Singh, O.V., Chandel, A.K., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 5–55. ISBN 978-3-319-95480-6. [Google Scholar]

9. Saini, S.; Sharma, K.K. Fungal Lignocellulolytic Enzymes and Lignocellulose: A Critical Review on Their Contribution to Multiproduct Biorefinery and Global Biofuel Research. Int. J. Biol. Macromol. 2021, 193, 2304–2319. [Google Scholar] [CrossRef] [PubMed]

10. Nargotra, P.; Vaid, S.; Bajaj, B.K. Cellulase Production from Bacillus subtilis SV1 and Its Application Potential for Saccharification of Ionic Liquid Pretreated Pine Needle Biomass under One Pot Consolidated Bioprocess. Fermentation 2016, 2, 19. [Google Scholar] [CrossRef] [Green Version]

11. Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef] [Green Version]

12. Nargotra, P.; Sharma, V.; Bajaj, B.K. Consolidated Bioprocessing of Surfactant-Assisted Ionic Liquid-Pretreated Parthenium hysterophorus L. Biomass for Bioethanol Production. Bioresour. Technol. 2019, 289, 121611. [Google Scholar] [CrossRef]

13. Houfani, A.A.; Anders, N.; Spiess, A.C.; Baldrian, P.; Benallaoua, S. Insights from Enzymatic Degradation of Cellulose and Hemicellulose to Fermentable Sugars—A Review. Biomass Bioenergy 2020, 134, 105481. [Google Scholar] [CrossRef]

14. Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The Carbohydrate-Active Enzymes Database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed] [Green Version]

15. Yang, M.; Zhang, K.-D.; Zhang, P.-Y.; Zhou, X.; Ma, X.-Q.; Li, F.-L. Synergistic Cellulose Hydrolysis Dominated by a Multi-Modular Processive Endoglucanase from Clostridium cellulosi. Front. Microbiol. 2016, 7, 932. [Google Scholar] [CrossRef] [Green Version]

16. Yao, G.; Wu, R.; Kan, Q.; Gao, L.; Liu, M.; Yang, P.; Du, J.; Li, Z.; Qu, Y. Production of a High-Efficiency Cellulase Complex via β-Glucosidase Engineering in Penicillium oxalicum. Biotechnol. Biofuels 2016, 9, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]

17. Singhania, R.R.; Patel, A.K.; Pandey, A.; Ganansounou, E. Genetic Modification: A Tool for Enhancing Beta-Glucosidase Production for Biofuel Application. Bioresour. Technol. 2017, 245, 1352–1361. [Google Scholar] [CrossRef]

18. Behera, S.S.; Ray, R.C. Solid State Fermentation for Production of Microbial Cellulases: Recent Advances and Improvement Strategies. Int. J. Biol. Macromol. 2016, 86, 656–669. [Google Scholar] [CrossRef]

19. Adsul, M.; Sandhu, S.K.; Singhania, R.R.; Gupta, R.; Puri, S.K.; Mathur, A. Designing a Cellulolytic Enzyme Cocktail for the Efficient and Economical Conversion of Lignocellulosic Biomass to Biofuels. Enzym. Microb. Technol. 2020, 133, 109442. [Google Scholar] [CrossRef]

20. Ostby, H.; Hansen, L.D.; Horn, S.J.; Eijsink, V.G.H.; Várnai, A. Enzymatic Processing of Lignocellulosic Biomass: Principles, Recent Advances and Perspectives. J. Ind. Microbiol. Biotechnol. 2020, 47, 623–657. [Google Scholar] [CrossRef] [PubMed]

21. Iram, A.; Cekmecelioglu, D.; Demirci, A. Ideal Feedstock and Fermentation Process Improvements for the Production of Lignocellulolytic Enzymes. Processes 2021, 9, 38. [Google Scholar] [CrossRef]

22. De Gonzalo, G.; Colpa, D.I.; Habib, M.H.M.; Fraaije, M.W. Bacterial Enzymes Involved in Lignin Degradation. J. Biotechnol. 2016, 236, 110–119. [Google Scholar] [CrossRef] [Green Version]

23. Plácido, J.; Capareda, S. Ligninolytic Enzymes: A Biotechnological Alternative for Bioethanol Production. Bioresour. Bioprocess. 2015, 2, 23. [Google Scholar] [CrossRef] [Green Version]

24. Rai, R.; Bibra, M.; Chadha, B.S.; Sani, R.K. Enhanced Hydrolysis of Lignocellulosic Biomass with Doping of a Highly Thermostable Recombinant Laccase. Int. J. Biol. Macromol. 2019, 137, 232–237. [Google Scholar] [CrossRef]

25. Sharma, S.; Tsai, M.-L.; Sharma, V.; Sun, P.-P.; Nargotra, P.; Bajaj, B.K.; Chen, C.-W.; Dong, C.-D. Environment Friendly Pretreatment Approaches for the Bioconversion of Lignocellulosic Biomass into Biofuels and Value-Added Products. Environments 2023, 10, 6. [Google Scholar] [CrossRef]

26. Sohail, M., Barzkar, N., Michaud, P., Tamadoni Jahromi, S., Babich, O., Sukhikh, S., Das, R., Nahavandi, R., 2022. Cellulolytic and xylanolytic enzymes from yeasts: Properties and industrial applications. Molecules 27.

27. Song, B., Lin, R., Lam, C.H., Wu, H., Tsui, T.-H., Yu, Y., 2021. Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques. Renew. Sustain. Energy Rev. 135, 110370.

28. Sperandio, G.B., Ferreira Filho, EX., 2019. Fungal co-cultures in the lignocellulosic biorefinery context: A review. Int. Biodeterioration Biodegrad. 142, 109–123.

29. Sulzenbacher, D., Atzmüller, D., Hawe, F., Richter, M., Cristobal-Sarramian, A., Zwirzitz, A., 2023. Optimization of steam explosion parameters for improved biotechnological use of wheat straw. Biomass Convers. Biorefinery 13, 1035–1046.

30. Tayyab, M., Noman, A., Islam, W., Waheed, S., Arafat, Y., Ali, F., Zaynab, M., Lin, S., Zhang, H., Khan, D., 2017. Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: A review. Appl. Ecol. Environ. Res. 16.

31. Thapa, B., Patidar, S.K., Khatiwada, N.R., Kc, A.K., Ghimire, A., 2019. Production of ethanol from municipal solid waste of India and Nepal. In: Ghosh, SK. (Ed.), Waste Valorisation and Recycling. Springer Singapore, Singapore, pp. 47–58.

32. Tiwari, R., Nain, L., Labrou, N.E., Shukla, P., 2018. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review. Crit. Rev. Microbiol. 44, 244–257.

33. Tsegaye, B., Balomajumder, C., Roy, P., 2019a. Alkali delignification and bacillus sp. BMP01 hydrolysis of rice straw for enhancing biofuel yields. Bull. Natl. Res. Centre 43, 136.

34. Tsegaye, B., Balomajumder, C., Roy, P., 2019b. Alkali pretreatment of wheat straw followed by microbial hydrolysis for bioethanol production. Environ. Technol. 40, 1203–1211.

35. Tushar, M., Dutta, A., 2020. Efficiency analysis of crude versus pure cellulase in industry. pp. 283–298.

36. Valles, A., Capilla, M., Álvarez-Hornos, F.J., García-Puchol, M., San-Valero, P., Gabaldón, C., 2021. Optimization of alkali pretreatment to enhance rice straw conversion to butanol. Biomass Bioenergy 150, 106131.

37. Vasaki, M., Sithan, M., Ravindran, G., Paramasivan, B., Ekambaram, G., Karri, R.R., 2022. Biodiesel production from lignocellulosic biomass using Yarrowia lipolytica. Energy Convers. Manage.: X 13, 100167.

38. Vasić, K., Ž, Knez, Leitgeb, M., 2021. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules 26.

39. Vu, H.P., Nguyen, L.N., Vu, M.T., Johir, M.A.H., McLaughlan, R., Nghiem, L.D., 2020. A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Sci. Total Environ. 743, 140630.

40. Wang, F., Ouyang, D., Zhou, Z., Page, S.J., Liu, D., Zhao, X., 2021. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 57, 247–280.

41. Wonoputri, V., Subiantoro, Kresnowati, P., Purwadi, R., 2018. Solid state fermentation parameters effect on cellulase production from empty fruit bunch. Bull. Chem. React. Eng. Catal. 13, 553–559.

42. Xia, A., Lin, K., Zhu, T., Huang, Y., Zhu, X., Zhu, X., Cai, K., Wei, Z., Liao, Q., 2022. Improving the saccharification efficiency of lignocellulosic biomass using a bio-inspired two-stage microreactor system loaded with complex enzymes. Green Chem. 24, 9519–9529.

43. Xiang, J., Wang, X., Sang, T., 2021. Cellulase production from Trichoderma reesei RUT C30 induced by continuous feeding of steam-exploded Miscanthus lutarioriparius. Ind. Crops Prod. 160, 113129.

44. Yan, X., Wang, Z., Zhang, K., Si, M., Liu, M., Chai, L., Liu, X., Shi, Y., 2017. Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresour. Technol. 245, 419–425.

45. Yue, P.-P., Fu, G.-Q., Hu, Y.-J., Bian, J., Li, M.-F., Shi, Z.-J., Peng, F., 2018. Changes of chemical composition and hemicelluloses structure in differently aged bamboo (neosinocalamus affinis) culms. J. Agricult. Food Chem. 66, 9199–9208.

46. Zafar, A., Hamid, A., Peng, L., Wang, Y., Aftab, M.N., 2022. Enzymatic hydrolysis of lignocellulosic biomass using a novel, thermotolerant recombinant xylosidase enzyme from clostridium clariflavum: a potential addition for biofuel industry. RSC Adv. 12, 14917–14931.

47. Zhang, H., Han, L., Dong, H., 2021. An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies. Renew. Sustain. Energy Rev. 140, 110758.

48. Zhang, F., Zhao, X., Bai, F., 2018. Improvement of cellulase production in trichoderma reesei rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour. Technol. 247, 676–683.

49. Zhu, J., Song, W., Chen, X., Sun, S., 2022. Integrated process to produce biohydrogen from wheat straw by enzymatic saccharification and dark fermentation. Int. J. Hydrogen Energy.

50. Zhuo, S., Yan, X., Liu, D., Si, M., Zhang, K., Liu, M., Peng, B., Shi, Y., 2018. Use of bacteria for improving the lignocellulose biorefinery process: importance of pre-erosion. Biotechnol. Biofuels 11, 146.

51. Ziaei-Rad, Z., Fooladi, J., Pazouki, M., Gummadi, S.N., 2021. Lignocellulosic biomass pre-treatment using low-cost ionic liquid for bioethanol production: An economically viable method for wheat straw fractionation. Biomass Bioenergy 151, 106140.

52. Bashir, N.; Sood, M.; Bandral, J.D. Enzyme Immobilization and Its Applications in Food Processing: A Review. Int. J. Chem. Stud. 2020, 8, 254–261. [Google Scholar] [CrossRef]

53. Rossini F., Provenzano M. E., Kuzmanovi´c L., Ruggeri R. (2019). Jerusalem Artichoke (Helianthus tuberosus L.): A Versatile and Sustainable Crop for Renewable Energy Production in Europe. Agronomy, 9, 528; https://doi:10.3390/agronomy9090528

54. Umai D., Kayalvizhi R., Kumar V., Jacob S. (2022). Xylitol: Bioproduction and Applications-A Review. Frontiers in Sustainability, 3, 826190; https://doi.org/10.3389/frsus.2022.826190

55. Kuhad R.C., Rapoport A., Kumar V., Singh D., Tiwari S. K., Ahlawat S., Singh B. (2024). Biological pretreatment of lignocellulosic biomass: An environment-benign and sustainable approach for conversion of solid waste into value-added products. Critical Reviews in Environmental Science and Technology, 2023, 54(10) https://doi.org/10.1080/10643389.2023.2277670

56. Feng J., Techapun C., Phimolsiripol Y., Phongthai S., Khemacheewakul J., Taesuwan S., Mahakuntha C., Porninta K., Htike S. L., Kumar A., Nunta R., Sommanee S, Leksawasdi N. (2024). Utilization of agricultural wastes for co-production of xylitol, ethanol, and phenylacetylcarbinol: A review. Bioresource Technology, 392, 129926 https://doi.org/10.1016/j.biortech.2023.129926

57. Jahangeer M., Rehman M., Nelofer R., Nadeem M., Munir B., Smułek W., Jesionowski T., Sarmad Ahmad Qamar S. A. (2024). Biotransformation of Lignocellulosic Biomass to Value Added Bioproducts: Insights into Bio Saccharifcation Strategies and Potential Topics in Catalysis. https://doi.org/10.1007/s11244-024-01941-9

58. Mathur S., Kumar D., Kumar V., Dantas A., Verma R.,Kamil Kuca K. (2023). Xylitol: Production strategies with emphasis on biotechnological approach, scale up, and market trends. Sustainable Chemistry and Pharmacy, 35, 101203 https://doi.org/10.1016/j.scp.2023.101203

59. Bakhtiar B., Manapova G., Mirgalimova A., Makhanova M., Tursunbayeva G. Obtaining biogas from agricultural waste. VOLUME 128 No. 5 (2023): BULLETIN OF KAZATK / Energetika https://doi.org/10.52167/1609-1817-2023-128-5-399-409


Review

For citations:


Issayeva A.U., Karimova S.S., Zhumadulaeva A.I., Aralbayeva R.B., Ashirbayeva S.B. MODERN ACHIEVEMENTS IN THE USE OF CELLULOLYTIC MICROORGANISMS FOR PROCESSING LIGNOCELLULOSE BIOMASS. Bulletin of Shakarim University. Technical Sciences. 2024;1(4(16)):243-254. (In Russ.) https://doi.org/10.53360/2788-7995-2024-4(16)-32

Views: 85


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X