Preview

Вестник Университета Шакарима. Серия технические науки

Расширенный поиск

ГУМИНОВЫЕ КИСЛОТЫ: СВОЙСТВА, СТРУКТУРА И ПРИМЕНЕНИЕ

https://doi.org/10.53360/2788-7995-2024-3(15)-41

Аннотация

Гуминовые вещества (ГВ) – это разнообразный класс природных соединений без фиксированного химического состава, образующихся из растительных и микробных остатков под действием факторов окружающей среды и живых организмов в течение многих лет. Несмотря на обширные исследования, продолжавшиеся два столетия, сложный и изменчивый характер структуры ГВ остается предметом научных исследований. Эти вещества, особенно гуминовые кислоты, фульвокислоты и гумин, играют решающую роль в экологических и экологических процессах из-за их большого количества функциональных групп и устойчивости к биоразложению. В обзоре рассматриваются сложная структура и свойства ГВ, их классификация и распространение в природе. В нем освещаются различные модели, предложенные для описания структурных фрагментов гуминовых кислот, подчеркиваются их ароматические ядра и разнообразные функциональные группы. Обсуждается также изменчивость молекулярно-массового распределения ГВ, обусловленная их полидисперсной природой, а также методы их определения, такие как эксклюзионная хроматография. Кроме того, изучен элементный и функциональный состав гуминовых кислот, уточнены их кислотно-основные свойства и способность к комплексообразованию тяжелых металлов. Освещается синтез ГВ из природных источников, таких как почва, торф, уголь, а также искусственных процессов, демонстрируя такие методы, как щелочная экстракция и гидротермальная обработка. Последние достижения в области искусственной гумификации, включая окислительный аммонолиз и окисление на основе реагента Фентона, рассматриваются на предмет их потенциала в производстве экологически чистых гуминовых материалов из лигнина и биомассы отходов. В заключение исследования подчеркивается экологическая значимость и практическое применение ГВ, особенно в сельском хозяйстве, кондиционировании почвы и восстановлении окружающей среды. Разнообразные свойства и методы синтеза ГВ делают их перспективными кандидатами для устойчивого производства материалов и управления окружающей средой.

Об авторах

А. Даулетбай
Казахский национальный университет имени аль-Фараби; Казахский национальный исследовательский технический университет им. К. Сатпаева
Казахстан

Акбар Даулетбай – PhD, и.о. доцента кафедры аналитической, коллоидной химии и ТРЭ, 050040, г. Алматы, пр. аль-Фараби, 71;

050013, г. Алматы, ул. Сатбаева, 22



Д. Ханжын
Казахский национальный университет имени аль-Фараби
Казахстан

Даурен Ханжын – МНС, 

050040, г. Алматы, пр. аль-Фараби, 71



А. Н. Оналбек
Казахский национальный университет имени аль-Фараби
Казахстан

Акбала Нурланкызы Оналбек – МНС, 

050040, г. Алматы, пр. аль-Фараби, 71



С. Тұрсынболат
Казахский национальный исследовательский технический университет им. К. Сатпаева
Казахстан

Сатар Тұрсынболат – PhD, ВНС, кафедры химических процессов и промышленной экологии,

050013, г. Алматы, ул. Сатбаева, 22



А. Далбанбай
Казахский национальный исследовательский технический университет им. К. Сатпаева
Казахстан

Амантай Далбанбай – преподаватель кафедры химических процессов и промышленной экологии, 

050013, г. Алматы, ул. Сатбаева, 22



Список литературы

1. Yarkova T.A. Theoretical Aspects of the Antioxidant Properties of Humic Acids // Solid Fuel Chemistry / Yarkova T.A., A.M. Gyul’maliev // Pleiades journals. – 2021. – Vol. 55, № 4. – P. 236- 243.

2. Yang F. The sleeping giant: A polymer View on humic matter in synthesis and applications / F. Yang, M. Antonietti // Prog Polym Sci. Pergamon. – 2020. – Vol. 100. – P. 1-15.

3. Ni H. Effects of Compound Fertilizer Decrement and Water-Soluble Humic Acid Fertilizer Application on Soil Properties, Bacterial Community Structure, and Shoot Yield in Lei Bamboo (Phyllostachys praecox) Plantations in Subtropical China / Ni H., Zhao J., Yang Z. // Forests. Multidisciplinary Digital Publishing Institute. – 2024. – Vol. 15, № 3. – P. 400.

4. Humic Acid Fertilizer Improved Soil Properties and Soil Microbial Diversity of Continuous Cropping Peanut: A Three-Year Experiment / Y. Li et al // Scientific Reports. Nature Publishing Group. – 2019. – Vol. 9, № 1. – P. 1-9.

5. Interaction of metal ions with humic acids of brown coals of Kazakhstan / A. Dauletbay et al // J Exp Nanosci. – Taylor & Francis. – 2020. – Vol. 15, № 1. – P. 406-416.

6. Influence of humic acid structure on the accumulation of oxyfluorfen in tropical soils of mountain agroecosystems / D.R. Barbosa et al // Environmental Pollution. – Elsevier. – 2021. – Vol. 284. – P. 117380.

7. Humic acid-based polyphenol-functionalized collagen fiber for efficient recognition capture of iodine vapor / Y. Tang et al // Appl Surf Sci. – North-Holland. 2024. – Vol. 663. – P. 160173.

8. Surface Properties of Nanoparticles Dictate Their Toxicity by Regulating Adsorption of Humic Acid Molecules / S. Li et al // ACS Sustain Chem Eng. – American Chemical Society. 2021. – Vol. 9, № 41. – P. 13705-13716.

9. Effects of long-term application of organic materials on soil water extractable organic matter, fulvic acid, humic acid structure and microbial driving mechanisms / H. Feng et al // Plant Soil. – Springer Science and Business Media Deutschland GmbH. 2024. – P. 1-19.

10. Stevenson F.J. Humus Chemistry: Genesis, Composition, Reactions. New York: John Wiley&Sons / F.J. Stevenson, 1994. – 443 p.

11. Orlov D.S. Gumusovye kisloty pochv i obshchaya teoriya gumifikatsii. / Izd-vo MGU, M., 1990. – 325 s. (In Russian).

12. Yang F. Artificial Humic Acids: Sustainable Materials against Climate Change / F. Yang, M. Antonietti // Advanced Science. – John Wiley and Sons Inc. – 2020. – Vol. 7, № 5. – P. 1-7.

13. Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE-ICP-MS / R. Kautenburger et al // Anal Chim Acta. – Elsevier. 2014. – Vol. 816. – P. 50-59.

14. Klavins M. Peat humic acid properties and factors influencing their variability in a temperate bog ecosystem / M. Klavins, O. Purmalis, V. Rodinov // Estonian Journal of Ecology. – 2013. – Vol. 62, № 1. – P. 35-52.

15. Biodegradations of three different rank coals by a newly isolated bacterium Bacillus sp. XK1 / C. Shi et al // Energy. – Pergamon. 2024. – Vol. 299. – P. 131441.

16. Volkov I.V. Kompleksoobrazovanie guminovykh kislot s mikroehlementami: metody i podkhody / I.V. Volkov, E.V. Polyakov // Zhurnal analiticheskoi khimii. – 2023. – Vol. 78, № 12. – P. 1064-1095. (In Russian).

17. Lodygin E. Relating Paramagnetic Properties to Molecular Parameters of Humic Acids Isolated from Permafrost Peatlands in the European Arctic / E. Lodygin, R. Vasilevich, E. Abakumov // Molecules. – 2024. – Vol. 29. – P. 104.

18. Pavlů L. Differences in humic acids structure of various soil types studied by DRIFT spectroscopy / L. Pavlů, M. Mühlhanselová // Soil and Water Research. – Czech Academy of Agricultural Sciences. – 2018. – Vol. 13, № 1. – P. 29-35.

19. Klučáková M. Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact / M. Klučáková // Front Chem. – 2018. – Vol. 6. – P. 235-248.

20. Compost and Humic Acid Mitigate the Salinity Stress on Quinoa (Chenopodium quinoa Willd L.) and Improve Some Sandy Soil Properties / S.A. Rekaby et al // J Soil Sci Plant Nutr. – Springer Science and Business Media Deutschland GmbH. – 2023. – Vol. 23, № 2. – P. 2651-2661.

21. Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity / M. Szostek et al // Agronomy. – 2022. – Vol. 12, № 1. – P. 208.

22. Immobilization properties and adsorption mechanism of nickel(II) in soil by biochar combined with humic acid-wood vinegar / J. Zhu et al // Ecotoxicol Environ Saf. – 2021. – Vol. 215, № 6. – P. 112-159.

23. Effect of selected organic materials on soil humic acids chemical properties / L. Pospíšilová, et al // Environ Res. – 2020. – Vol. 187. – P. 109663.

24. Structural characteristics of humic acids derived from Chinese weathered coal under different oxidizing conditions / L. Zhou et al // PLoS One / ed. Mao J. – 2019. – Vol. 14, № 5. – P. 1-15.

25. Debska B. Molecular size distribution and hydrophilic and hydrophobic properties of humic acids isolated from forest soil / B. Debska, M. Drag, M. Banach-Szott // Soil and Water Research. – 2007. – Vol. 2, № 2. – P. 45-53.

26. Theoretical Study of the Molecular Coupled Structures of Aristolochic Acids and Humic Acid, Potential Environmental Contaminants / A.M. Petrescu et al // Chem Biodivers. – 2019. – Vol. 16, № 11. – P. e1900406.

27. Macromolecular Structure of a Commercial Humic Acid Sample / S. Capasso et al // Environments. – 2020. – Vol. 7, № 4. – P. 1-8.

28. Influence of humic acid and its different molecular weight fractions on sedimentation of nanoscale zero-valent iron / Y. Wu et al // Environmental Science and Pollution Research. – 2020. – Vol. 27, № 3. – P. 2786-2796.

29. Sorption of Organic Pollutants by Humic Acids: A Review / S. Chianese et al // Molecules. – 2020. – Vol. 25, № 4. – P. 918.

30. Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings / J. Jing et al // Sci Rep. – 2020. – Vol. 10, № 1. – P. 17502.

31. Assessment of Compost-Derived Humic Acids Structure from Ligno-Cellulose Waste by TMAH-Thermochemolysis / F.Z. El Ouaqoudi et al // Waste Biomass Valorization. – 2019. – Vol. 10, № 9. – P. 2661-2672.

32. Tomati U. Evolution of Humic Acid Molecular Weight As an Index of Compost Stability / U. Tomati, E. Madejon, E. Galli // Compost Sci Util. – 2000. – Vol. 8, № 2. – P. 108-115.

33. Mechanism of middle and low molecular weight humic acids in promoting phosphorus fertilizer uptake efficiency and yield of winter wheat / W. Li et al // Journal of Plant Nutrition and Fertilizers. – 2020. – Vol. 26, № 11. – P. 2043-2050.

34. Study on humic acid-like components, molecular structure and physiological activity / B. Shang et al // Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering. – 2021. – Vol. 21, № 8. – P. 969-975.

35. Direct observation of macromolecular structures of humic acid by AFM and SEM / C. Chen et al // Colloids Surf A Physicochem Eng Asp. – 2007. – Vol. 302, № 1-3. – P. 121-125.

36. Impacts of forestry drainage on surface peat stoichiometry and physical properties in boreal peatlands in Finland / J. Turunen et al // Biogeochemistry. – Springer Science and Business Media Deutschland GmbH. – 2024. – Vol. 167, № 4. – P. 589-608.

37. Insight into the interaction mechanism of iron ions with soil humic acids. The effect of the pH and chemical properties of humic acids / P. Boguta et al // J Environ Manage. – Academic Press. 2019. – Vol. 245. – P. 367-374.

38. The vital function of humic acid with different molecular weights in controlling Cd and Pb bioavailability and toxicity to earthworm (Eisenia fetida) in soil / H. Bai et al // Environmental Pollution. – Elsevier. 2020. – Vol. 261. – P. 114222.

39. Zhang B. Effects of Different Planting Years of Hazelnut on Soil Organic Carbon and Humic Acid Structural Characteristics / B. Zhang, S. Dou, X. Zhang // Commun Soil Sci Plant Anal. – Taylor & Francis. – 2021. – Vol. 52, № 12. – P. 1377-1387.

40. A direct potentiometric titration study of the dissociation of humic acid with selectively blocked functional groups / T. Andjelkovic et al // Eclética Química. – Fundação Editora da Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP. – 2006. – Vol. 31, № 3. – P. 39-46.

41. Klučáková M. Diffusivity of Cu(II) ions in humic gels - influence of reactive functional groups of humic acids / M. Klučáková, M. Kalina // Colloids Surf A Physicochem Eng Asp. – 2015. – Vol. 483. – P. 162-170.

42. High molecular weight humic-like substances in carboneous aerosol of Ulaanbaatar city / S. Tserenpil et al // Mongolian Journal of Chemistry. – 2018. – Vol. 19, № 45. – P. 5-11.

43. Klucakova M. How Humic Acids Affect the Rheological and Transport Properties of Hydrogels / M. Klucakova, J. Smilek, P. Sedlacek // Molecules. – 2019. – Vol. 24, № 8. – P. 1-15.

44. Physicochemical And Antioxidant Properties Of Humic Acids Of Low-Mineralized Peloids Of The Tuzkol Deposit / Zh.К. Кairbekov et al // Series Chemistry And Technology. – 2021. – Vol. 447, № 3. – P. 48-53.

45. Reduction mechanism of hexavalent chromium by functional groups of undissolved humic acid and humin fractions of typical black soil from Northeast China / J. Zhang et al // Environmental Science and Pollution Research. – 2018. – Vol. 25, № 17. – P. 16913-16921.

46. Chukhareva N. Regularization of peat humic acids functional composition / N. Chukhareva, O. Zarubina, A. Zarubin // E3S Web of Conferences/ed. – 2019. – Vol. 98. – P. 02003.

47. Tuning Functional Behavior of Humic Acids through Interactions with Stöber Silica Nanoparticles / G. Pota et al // Polymers (Basel). – 2020. – Vol. 12, № 4. – P. 982.

48. The molecular conformation, but not disaggregation, of humic acid in water solution plays a crucial role in promoting plant development in the natural environment / J. Aranaz et al // Front Plant Sci. – Frontiers Media S.A. – 2023. – Vol. 14. – P. 1180688.

49. Swift R.S. Gel chromatography of humic acid / R.S. Swift, A.M. Posner // Journal of Soil Science. – 1971. – V. 22, № 2. – P. 237-249.

50. Characterization of Humic Substances by Functional Groups and Spectroscopic Methods / M. Eshwar et al // Int J Curr Microbiol Appl Sci. – 2017. – Vol. 6, № 10. – P. 1768-1774.

51. Long‐term mineral fertilization in paddy soil alters the chemical structures and decreases the fungistatic activities of humic acids / M. Wu et al // Eur J Soil Sci. – 2019. – Vol. 70, № 4. – P. 776- 785.

52. Barančíková G. Changes of humic acids structure on selected key monitoring localities of arable soils / G. Barančíková // Rostlinna Vyroba. – 2002. – Vol. 48, № 1. – P. 40-44.

53. Yao J.J. Adsorption of aflatoxin on montmorillonite modified by low-molecular-weight humic acids / J.J. Yao, F.X. Kang, Y.Z. Gao // Huanjing Kexue/Environmental Science. – 2012. – Vol. 33, № 3. – P. 958-964.

54. Klučáková M. New possibility for characterization of dissociation behavior of supramolecular electrolytes: results obtained for the International Humic Substances Society standard and reference samples by coulometry / M. Klučáková // Chemical and Biological Technologies in Agriculture. – 2021. – Vol. 8, № 1. – P. 1-10.

55. Effects of peat fires on the characteristics of humic acid extracted from peat soil in Central Kalimantan, Indonesia / Yustiawati Kihara Y. et al // Environmental Science and Pollution Research. – Springer Verlag. 2015. – Vol. 22, № 4. – P. 2384-2395.

56. Characterization of the coal-derived humic acids from Mukah, Sarawak as soil conditioner / S.F. Sim et al // J Braz Chem Soc. – Sociedade Brasileira de Química. 2006. – Vol. 17, № 3. – P. 582- 587.

57. Physicochemical Characterization and Antioxidant Activity of Humic Acids Isolated from Peat of Various Origins / M.V. Zykova et al // Molecules. – 2018. – Vol. 23, № 4. – P. 753.

58. Selective extraction of humic acids from an anthropogenic Amazonian dark earth and from a chemically oxidized charcoal / J.R. Araujo et al // Biol Fertil Soils. – Springer Verlag. 2014. – Vol. 50, № 8. – P. 1223-1232.

59. De Souza F. Extraction and characterization of humic acid from coal for the application as a dispersant of ceramic powders / F. De Souza, S.R. Bragança // J Market Res. – Elsevier Editora Ltda. 2018. – Vol. 7, № 3. – P. 254-260.

60. Humic substances derived from unconventional resources: extraction, properties, environmental impacts, and prospects / O.T. Ore et al // Environmental Science and Pollution Research 2023 30:21. – Springer. 2023. – Vol. 30, № 21. – P. 59106-59127.

61. Methods for obtaining humate-containing fertilizers from brown coal / B. Omarov et al // International Journal of Coal Preparation and Utilization. – Taylor & Francis. 2024.

62. Al-Akbari R. Production of humic and fulvic acid analogs through the ultrasonication of low-rank lignite coals / R. Al-Akbari, A.D. Manasrah, N.N. Nassar // React Chem Eng. – The Royal Society of Chemistry. – 2024. – Vol. 9, № 3. – P. 566-582.

63. Process optimization and method validation for efficient valorization of low-grade coal into humic substances / K. Aftab et al // Fuel. – Elsevier. 2024. – Vol. 369. – P. 131796.

64. Тейт Р. Органическое вещество почвы / Р. Тейт. – М.: Мир. – 1995. – 400 с.

65. Горовая А.И. Гуминовые вещества / А.И. Горовая, Д.С. Орлов. – Киев: Наук. думка,. – 1995. – 304 с.

66. Production of artificial humic acid from biomass residues by a non-catalytic hydrothermal process / Y. Shao et al // J Clean Prod. – 2022. – Vol. 335. – P. 130302.

67. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation / F. Yang et al // Science of The Total Environment. – 2019. – Vol. 686. – P. 1140-1151.

68. Zhang Y/ Study on Extraction of Biological Humic Acids from Fermented Furfural Residue - ProQuest / Y. Zhang, G. Cui, G.D.Y. Zhang // Agricultural Science & Technology. – 2016. – Vol. 17, № 6. – P. 1442-1445.

69. Chang M.Y., Huang W.J. Hydrothermal biorefinery of spent agricultural biomass into valueadded bio-nutrient solution: Comparison between greenhouse and field cropping data / M.Y. Chang, W.J. Huang // Ind Crops Prod. – 2018. – Vol. 126. – P. 186-189.

70. Alkali catalysis hydrothermal conversion of cabbage leaf in kitchen waste / W. Junzhe et al // Chinese Journal of Environmental Engineering. – 2017. – Vol. 11, № 1. – P. 578-581.

71. Biomass Waste Processing into Artificial Humic Substances / M. Klavins et al // Environmental and Climate Technologies. – 2021. – Vol. 25, № 1. – P. 631-639.

72. Potential Hydrothermal-Humification of Vegetable Wastes by Steam Explosion and Structural Characteristics of Humified Fractions / W. Sui et al // Molecules. – 2021. – Vol. 26, № 13. – P. 3841.

73. Humic Substances Derived From Biomass Waste During Aerobic Composting and Hydrothermal Treatment: A Review / Z.T. Hu et al // Front Bioeng Biotechnol. – 2022. – Vol. 10. – P. 878686.

74. Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein / P. Chen et al // Science of The Total Environment. – 2022. – Vol. 828. – P. 154440.

75. Wet air oxidation of p-coumaric acid over promoted ceria catalysts / G. Neri et al // Appl Catal B. – 2002. – Vol. 38, № 4. – P. 321-329.

76. KOH catalyzed oxidation of kraft lignin to produce green fertilizer / S. Sutradhar et al // Catal Today. – 2022. – Vol. 404. – P. 49-62.

77. Piccolo A. Humic-Like Water-Soluble Lignins from Giant Reed (Arundo donax L.) Display Hormone-Like Activity on Plant Growth / D. Savy et al // J Plant Growth Regul. – 2017. – Vol. 36, № 4. – P. 995-1001.

78. Water-Soluble Lignins from Different Bioenergy Crops Stimulate the Early Development of Maize (Zea mays, L.) / D. Savy et al // Molecules. – 2015. – Vol. 20, № 11. – P. 19958-19970.

79. Molecular Characterization of Extracts from Biorefinery Wastes and Evaluation of Their Plant Biostimulation / D. Savy et al // ACS Sustain Chem Eng. – 2017. – Vol. 5, № 10. – P. 9023-9031.

80. Humic-like bioactivity on emergence and early growth of maize (Zea mays L.) of water-soluble lignins isolated from biomass for energy / D. Savy et al // Plant Soil. – 2016. – Vol. 402, № 1-2. – P. 221-233.

81. Mechanistic understanding of humin formation in the conversion of glucose and fructose to 5-hydroxymethylfurfural in [BMIM]Cl ionic liquid / Z. Xu et al // RSC Adv. – 2020. – Vol. 10, № 57. – P. 34732-34737.

82. One-Pot Transformation of Technical Lignins into Humic-Like Plant Stimulants through Fenton-Based Advanced Oxidation: Accelerating Natural Fungus-Driven Humification / H.J. Jeong et al // ACS Omega. – 2018. – Vol. 3, № 7. – P. 7441-7453.

83. Chemical Pathway and Kinetics of Phenol Oxidation by Fenton’s Reagent / J.A. Zazo et al // Environ Sci Technol. – 2005. – Vol. 39, № 23. – P. 9295-9302.

84. Conversion of technical lignins into slow-release nitrogenous fertilizers by ammoxidation in liquid phase / D. Meier et al // Bioresour Technol. – 1994. – Vol. 49, № 2. – P. 121-128.

85. Fischer K. Nitrogenous Fertilizers from Lignins – A Review / K. Fischer, R. Schiene // Chemical Modification, Properties, and Usage of Lignin. – Springer, Boston, MA. 2002. – P. 167-198.

86. Oxidative ammonolysis of technical lignins Part 2. Effect of oxygen pressure / E.A. Capanema et al // Holzforschung. – 2001. – Vol. 55, № 4. – P. 405-412.

87. Oxidative ammonolysis of technical lignins. Part 3. Effect of temperature on the reaction rate / E.A. Capanema et al // Holzforschung. – 2002. – Vol. 56, № 4. – P. 402-415.

88. Anita S B.K. Oxidative ammonolysis of commercial lignin- a new concept to produce N-modified lignin / S B.K. Anita // Indian Forester. – 2000. – Vol. 126, № 6. – P. 643-649.

89. Effects of humic acids in vitro / J. Vašková et al // In Vitro Cell Dev Biol Anim. – 2011. – Vol. 47, № 5-6. – P. 376-382.

90. Development Of Humics-Based Detoxicants Of Complex Effect / S.P. Li et al // Chem. J. Mold. – 2012. – Vol. 7, № 1. – P. 29-39.

91. He C. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers / C. He, D. Liu, W. Lin // Chem Rev. – American Chemical Society. 2015. – Vol. 115, № 19. – P. 11079-11108.

92. Humic extracts from hydrochar and Amazonian Anthrosol: Molecular features and metal binding properties using EEM-PARAFAC and 2D FTIR correlation analyses / L. Soares da Silva et al // Chemosphere. – 2020. – Vol. 256. – P. 127110.

93. Sorption of copper cations from aqueous solutions by brown coals and humic acids / S.I. Zherebtsov et al // Solid Fuel Chemistry. – 2015. – Vol. 49, № 5. – P. 294-303.

94. Preferential Sorption of Tannins at Aluminum Oxide Affects the Electron Exchange Capacities of Dissolved and Sorbed Humic Acid Fractions / E. Subdiaga et al // Environ Sci Technol. – 2020. – Vol. 54, № 3. – P. 1837-1847.

95. Linnik P.N. Potential Complexing Ability of Surface Water Organic Matter: I. Role of Various Groups in Metal Ion Binding / P.N. Linnik, V.A. Zhezherya, V.P. Osipenko // Russ J Gen Chem. – 2020. – Vol. 90, № 13. – P. 2582-2592.

96. Coupled Manganese Redox Cycling and Organic Carbon Degradation on Mineral Surfaces / D. Ma et al // Environ Sci Technol. – 2020. – Vol. 54, № 14. – P. 8801-8810.

97. Role of organic matter and humic substances in the binding and mobility of arsenic in a Gangetic aquifer / S. Kar et al // J Environ Sci Health A Tox Hazard Subst Environ Eng. – 2011. – Vol. 46, № 11. – P. 1231-1238.

98. Silva A.P. Use of electrochemical techniques to characterize methamidophos and humic acid specifically adsorbed onto Pt and PtO films / A.P. Silva, A.E. Carvalho, G. Maia // J Hazard Mater. – 2011. – Vol. 186, № 1. – P. 645-650.

99. Milanovskii E.Yu. Amphiphilous components of soil humic substances / E.Yu. Milanovskii // Eur. Soil Sci. 2000. – Vol. 33(6). – P. 617-625.

100. Bahvalov, A.V. The elemental composition and amphiphilic properties of humic acids in southern taiga soils / A.V. Bahvalov, M.S. Rozanova, S.Y. Trofimov // Moscow Univ. Soil Sci. Bull. 2010. – Vol. 65. – P. 168-171.

101. Milkheev E.Yu. Amphiphilic properties of humic substances in soils of the southern Vitim Plateau (Transbaikalia, Eastern Siberia) / E.Yu. Milkheev, Yu.B. Tsybenov // Conference Series Earth and Environmental Science. –2021. – № 908(1). DOI:10.1088/1755-1315/908/1/012034.

102. Nebbioso A. Advances in humeomics: Enhanced structural identification of humic molecules after size fractionation of a soil humic acid / A. Nebbioso, A. Piccolo // Anal. Chim. Acta. – 2012. – Vol. 720. – P. 77-90.

103. Woelki G. Thermal investigations of the structure of two humic acid salts by in situ FTIR spectroscopy / G. Woelki, R. Salzer // Fresenius. J. Anal. Chem. – 1995. – Vol. 352(5). – P. 529- 531.

104. Characterization of insolubilized humic acid and its sorption behaviors / H. Chen et al // Environ. Geol. – 2009. – Vol. 57. – P. 1847-1853.

105. Synthesis and characteristics of a novel FeNi3/SiO2/TiO2 magnetic nanocomposites and its application in adsorption of humic acid from simulated wastewater: study of isotherms and kinetics / F. Akbari et al / Environ. Sci. Pollut. Res. – 2019. – Vol. 26. – P. 1-12.

106. Effects of peat fires on the characteristics of humic acid extracted from peat soil in Central Kalimantan, Indonesia / Y. Yustiawati Kihara et al // Environ. Sci. Pollut. Res. – 2014. – Vol. 22(4). – P. 2384-2395.

107. Fong S.S. Chemical characterization of humic substances occurring in the peats of Sarawak, Malaysia / S.S. Fong, M. Mohamed // Org. Geochem. – 2007. – Vol. 38(6). – P. 967-976.

108. Coagulation performance and mechanism analysis of humic acid by using covalently bonded coagulants: effect of pH and matching mechanism of humic acid functional groups / Y. Kong et al // Environmental Science and Pollution Research. – 2024. – Vol. 31(15). – P. 22560-22575.

109. Investigation into the role of carboxylic acid and phenolic hydroxyl groups in the plant biostimulant activity of a humic acid purified from an oxidized sub-bituminous coal / R.T. Lamar et al // Frontiers in Plant Science. – 2024. – Vol. 15. – P. 1328006.

110. A novel approach for recovery of metals from waste printed circuit boards and simultaneous removal of iron from steel pickling waste liquor by two-step hydrometallurgical method / L. Wang et al // Waste Management. – 2018. – Vol. 71. – P. 411-419.

111. Comparison of humic and fulvic acid on remediation of arsenic contaminated soil by electrokinetic technology / J. Li et al // Chemosphere. – 2020. – Vol. 241. – P. 125038.

112. Selective enhancement of Mn bioleaching from ferromanganese ores in the presence of electron shuttles using dissimilatory Mn reducing consortia / V. Aishvarya et al // Hydrometallurgy. – 2019. – Vol. 186. – P. 269-274.

113. Coal-Derived Humic Substances: Insight into Chemical Structure Parameters and Biomedical Properties / M.V. Zykova et al // Molecules/ – 2024. – Vol. 29(7). – P. 153.

114. Physicochemical characterization and antioxidant activity of humic acids isolated from peat of various origins / M.V. Zykova et al //Molecules. – 2018. – Vol. 23. – P. 753.

115. Senesi N. Application of Electron Spin Resonance (ESR) Spectroscopy in Soil Chemistry / N. Senesi // Springer: New York, NY, USA. – 1990. – Vol. 1. – P. 77-130.

116. Aeschbacher M. Novel electrochemical approach to assess the redox properties of humic substances / M. Aeschbacher, M. Sander, R.P. Schwarzenbach // Environ. Sci. Technol. – 2009. – Vol. 44. – Р. 87-93.

117. Complement-fixing activity of fulvic acid from shilajit and other natural sources / I.A. Schepetkin et al // Phytother. Res. – 2009. – Vol. 23. – P. 373-384.

118. pH-induced shift in the g-tensor components of semiquinone-type radicals in humic acids–DFT and EPR studies / M. Witwicki et al // Chem. Phys. Lett. – 2008. – Vol. 462. – P.300-306.

119. Nurmi J.T. Electrochemical properties of natural organic matter (NOM), fractions of nom, and model biogeochemical electron shuttles / J.T. Nurmi, P.G. Tratnyek, // Environ. Sci. Technol. – 2002. – Vol. 36. – P. 617-624.

120. Immunomodulating properties of humic acids extracted from oligotrophic sphagnum magellanicum peat / E.S. Trofimova et al // Bulletin of Experimental Biology and Medicine. – 2021. – Vol.170. – P. 461-465.

121. Immuno-modulatory effects of nanoplastics and humic acids in the European seabass (Dicentrarchus labrax) / I. Brandts et al // Journal of Hazardous Materials. – 2021. – Vol. 414. – P. 125562.

122. Characterization of humic substances in waters and their therapeutic applications-a review / J. Ziemska et al // Acta Balneologica. – 2024. – Vol. 179(1). – P. 60-68.

123. Van Rensburg C.E. The antiinflammatory properties of humic substances: a mini review / C.E. Van Rensburg // Phytotherapy Research. – 2015. – Vol. 29(6). – P. 791-795.

124. Antiflammatory activity and potential dermatological applications of characterized humic acids from a lignite and a green compost / M. Verrillo et al // Scientific reports. – 2022. – Vol. 12(1). – P. 2152.

125. Rusliandi R. The anti-inflammatory activity of humic acid from Borneo peat soil in mice / R. Rusliandi, D.W. Rousdy, M. Mukarlina // Majalah Obat Tradisional. – 2020. – Vol. 25(1). – P. 22-28.

126. The effect of dietary humic substances on cellular immunity and blood characteristics in piglets / L. Bujňák et al // Agriculture. – 2023. – Vol. 13(3). – P. 636.

127. Humic substances trigger plant immune responses / R.M. da Silva et al // Chemical and Biological Technologies in Agriculture. – 2023. – Vol. 10(1). – P. 123.

128. Waste to wealth: near-infrared/pH dual-responsive copper-humic acid hydrogel films for Bacteria-infected cutaneous wound healing / K. Zha et al // ACS nano. – 2023. – Vol. 17(17). – P. 17199-17216.

129. Haufe S. Humic Acids in Patients with Diarrhoea-Predominant Irritable Bowel Syndrome: Results from A Randomised Controlled Trial / S. Haufe, G. Gammel, I. Schiefke // Biomedical Journal of Scientific & Technical Research. – 2021. – Vol. 33(1). – P. 25584-25591.

130. El-kelawy M. The influence of supplementing broiler chickens with humic acid or biochar as natural growth promoters on their productive performance, nutrient digestibility, and physiological performance / M. El-kelawy, A.S. Elnaggar, A.E.K. Enass // Egyptian Poultry Science Journal. – 2024. – Vol. 44(1). – P. 123-142.

131. Effects of humic acid supplemented feeds on growth performance, hematological parameters and antioxidant capacity on common carp (Cyprinus carpio): Humic acid supplemented diets for Common carp / N. Çoban et al // Marine Reports (Marep). – 2024. – Vol. 3(1). – P. 63-76.

132. Protective effects of sodium humate and its zinc and selenium chelate on the oxidative stress, inflammatory, and intestinal barrier damage of Salmonella Typhimurium-challenged broiler chickens / Y. Fan et al // Poultry Science. – 2024. – № 103(5). – P. 103541.

133. Assessment of the Impact of Humic Acids on Intestinal Microbiota, Gut Integrity, Ileum Morphometry, and Cellular Immunity of Turkey Poults Fed an Aflatoxin B1-Contaminated Diet / J.A. Maguey-González et al // Toxins. – 2024. – Vol. 16(3). – P. 122.

134. de Melo B.A.G. The interactions between humic acids and Pluronic F127 produce nanoparticles useful for pharmaceutical applications / B.A.G. de Melo, F.L. Motta, M.H.A. Santana // J. Nanoparticle Res. – 2015. – № 17(10). Р. 400.

135. Petrov, G.V. Physical and Chemical Characteristic of Aqueous Colloidal Infusions of Medicinal Plants Containing Humic Acids / G.V. Petrov, I.A. Gaidashev, A.V. Syroeshkin // Int. J. Appl. Pharm. – 2024. – Vol. 16. – P. 76-82.

136. Preparation of entrapment-based microcolumns for analysis of drug-humic acid interactions by high-performance affinity chromatography / S. Iftekhar et al // Analytica Chimica Acta. – 2023. – Vol. 1239. – P. 340629.

137. Therapeutic efficiency of humic acids in intoxications / J. Vašková et al // Life. – 2023. – Vol. 13(4). – P. 971.

138. Two Metallic Nanoparticles Formulas of Phyllostachys heterocycla Extract Exhibited Potent Cytotoxicity against Ovarian Cancer Cells through Apoptosis Induction / R.F. Abdelhameed et al // Journal of Cluster Science. – 2024. – P. 1-13.

139. Shahrajabian M.H. Wild Rue (Peganum harmala), an Extraordinary Source of Natural Products and Pharmacological Benefits / M.H. Shahrajabian, W. Sun // In Presented at the 4th International Electronic Conference on Foods. – 2023. – Vol. 15. – P. 30.

140. Study of Smart Bioactive Humic-Polymeric Hydrogel Transdermal Materials K. Lebedeva et al // In Materials Science Forum. – 2023. – Vol. 1096. – P. 121-128.

141. The effect of combining humic and fulvic acids poultice on wound healing in male rats / N. Gheibi et al // Journal of Cutaneous and Aesthetic Surgery. – 2024. – Vol. 17(2). – Р.105-111.

142. Kargar E. Improved photocatalytic disinfection performance of graphitic carbon nitride through hybridization with humic acid/zinc peroxide: A synergistic generation of antimicrobial reactive oxygen species / E. Kargar, A. Meshkini // Journal of Photochemistry and Photobiology A: Chemistry. – 2024. – Vol. 452. – P. 115577.

143. Deciphering the Roles of Extracellular Polymeric Substances (EPS) in Shaping Disinfection Kinetics through Permanent Removal via Genetic Disruption / H. Sun et al // Environmental Science & Technology. – 2024. – Vol. 58(15). – P. 6552-6563.


Рецензия

Для цитирования:


Даулетбай А., Ханжын Д., Оналбек А.Н., Тұрсынболат С., Далбанбай А. ГУМИНОВЫЕ КИСЛОТЫ: СВОЙСТВА, СТРУКТУРА И ПРИМЕНЕНИЕ. Вестник Университета Шакарима. Серия технические науки. 2024;(3(15)):321-340. https://doi.org/10.53360/2788-7995-2024-3(15)-41

For citation:


Dauletbay A., Hanzheng D., Ongalbek A.N., Tursynbolat S., Dalbanbay A. HUMIC ACIDS: PROPERTIES, STRUCTURE, AND APPLICATION. Bulletin of Shakarim University. Technical Sciences. 2024;(3(15)):321-340. https://doi.org/10.53360/2788-7995-2024-3(15)-41

Просмотров: 219


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X