Preview

Вестник Университета Шакарима. Серия технические науки

Расширенный поиск

СИНТЕЗ И ПРИМЕНЕНИЕ ФОСФИНИТОВЫХ РУТЕНИЙ СОДЕРЖАЩИХ КАТАЛИЗАТОРОВ В ТРАНСФЕРНОМ ГИДРИРОВАНИИ

https://doi.org/10.53360/2788-7995-2024-3(15)-38

Аннотация

Трансферное гидрирование (ТГ) является весьма важной реакцией в органической химии, особенно при синтезе фармацевтических препаратов, агрохимикатов и продуктов тонкой химии. Этот метод включает перенос водорода от донорной молекулы к ненасыщенному субстрату, предлагая более безопасную и удобную альтернативу прямому гидрированию, для которого обычно требуется газообразный водород под высоким давлением, что является небезопасным. ТГ выделяется своей способностью избирательно восстанавливать несколько функциональных групп в более мягких условиях, тем самым снижая риск чрезмерного восстановления или повреждения чувствительных функциональных групп. Этот метод особенно ценен в асимметричном способе получения веществ, где хиральные катализаторы позволяют получать энантиомерно чистые соединения, имеющие решающее значение для разработки фармацевтических лекарств.

Рутениевые комплексы особенно примечательны своей эффективностью при асимметричном трансферном гидрировании. Их стабильность и адаптируемость к различным реакционным средам делают рутениевых комплексов идеальными как для лабораторного, так и для промышленного применения, они универсальны и могут использоваться для восстановления кетонов, альдегидов, иминов и нитрилов. Фосфинитовые лиганды (P(OR)R'2) используются в синтезе комплексов для улучшения их свойств. Эти лиганды очень известны своей способностью тонко настраивать электронные и стерические свойства металлоцентров. Электронодонорная природа атома фосфора в сочетании с изменчивостью функциональных групп R и R' позволяет существенно настраивать свойства катализатора.

Цель работы – обзор современных открытий в области трансферного гидрирования и исторических предпосылок ТГ.

Интеграция фосфинитных лигандов с рутениевыми катализаторами знаменует собой значительный прогресс в области трансферного гидрирования. Эти катализаторы демонстрируют повышенную эффективность, селективность и стабильность, что имеет решающее значение в асимметричном синтезе, который важен для получения фармакологических препараратов и агрохимикатов. Изучение в ходе исследования различных источников, оснований и механизмов водорода позволило глубже понять процесс TГ.

Об авторах

С. Е. Турсынбек
Казахстанско-Британский технический университет
Казахстан

Сания Ержановна Турсынбек – докторант,

Алматы, ул. Толе би 59



Х. С. Рафикова
Satbaev University
Казахстан

Хадичахан Сабиржановна Рафикова – старший научный сотрудник, ассоциированный профессор, PhD,

Алматы, ул. Сатбаева 22



В. М. Дембицкий
Центр прикладных исследований, инноваций и предпринимательства, Летбриджский колледж
Канада

Валерий Михайлович Дембицкий – профессор, доктор химических наук,

Летбриджский колледж, Летбридж



Д. С. Золотарева
Казахстанско-Британский технический университет
Казахстан

Дарья Сергеевна Золотарева – научный сотрудник,

Алматы, ул. Толе би 59



Е. О. Белянкова
Казахстанско-Британский технический университет
Казахстан

Елизавета Олеговна Белянкова – научный сотрудник,

Алматы, ул. Толе би 59



Список литературы

1. Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism / Y. Wang et al // J. Am. Chem. Soc. – 2018. – Vol. 140. – P. 4417−4429. DOI: https://doi.org/10.1021/jacs.8b01038.

2. Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction / B. Taleb et al // Molecules. – 2023. – Vol. 28. – P. 7541. DOI: https://doi.org/10.3390/molecules28227541.

3. Arslan N. Enantioselective transfer hydrogenation of pro-chiral ketones catalyzed by novel ruthenium and iridium complexes of well-designed phosphinite ligand / N. Arslan // Phosphorus,Sulfur Silicon Relat. Elem. – 2019. – Vol. 195. – P. 628-637. DOI: https://doi.org/10.1080/10426507.2019.1704285.

4. Vyas V.K. Enantioselective Synthesis of Bicyclopentane-Containing Alcohols via Asymmetric Transfer Hydrogenation / V.K. Vyas, G.J. Clarkson, M. Wills // Org. Lett. – 2021. – Vol. 23. – P. 3179- 3183. DOI: https://doi.org/10.1021/acs.orglett.1c00889.

5. A new class of well-defined ruthenium catalysts for enantioselective transfer hydrogenation of various ketones / C. Kayan et al // J. Organomet. Chem. – 2018. – Vol. 869. – P. 37-47. DOI: https://doi.org/10.1016/j.jorganchem.2018.06.002.

6. Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines / T. Senthamarai et al // Nat. Commun. – 2018. – Vol. 9. – P. 4123. DOI: https://www.nature.com/articles/s41467-018-06416-6.

7. A new efficient bis(phosphinite)-ruthenium(II) catalyst system for the asymmetric transfer hydrogenation of aromatic ketones / F. Durap et al // Inorg. Chim. Acta. – 2014. - Vol. 411. – P. 77- 82. DOI: https://doi.org/10.1016/j.ica.2013.11.029.

8. Extraction of actinide ions using three CMPO-functionalized pillar[5]arenes in a room temperature ionic liquid / A. Sengupta et al // J. Sep. Pur. – 2017. – Vol. 195. – P. 224-231. DOI: https://doi.org/10.1016/j.seppur.2017.11.059.

9. Extending the Application Scope of Organophosphorus(V) Compounds in Palladium(II) Pincer Chemistry / D.V. Aleksanyan et al // Organometallics. – 2019. – Vol. 38. – P. 1062-1080. DOI: https://doi.org/10.1021/acs.organomet.8b00867.

10. Rahim A. 1,4‐Migration of Transition Metals in Organic Synthesis / A. Rahim, J. Feng, Z. Gu // Chin. J. Chem. – 2019. – Vol. 37. – P. 929-945. DOI: https://doi.org/10.1002/cjoc.201900180.

11. Gomez‐Suarez A. Complexes of the Late Transition Metals: Organometallic Chemistry and Catalysis / A. Gomez‐Suarez, D.J. Nelson, S.P. Nolan // Adv. Organomet.Chem. – 2019. – Vol. 69. – P. 283-327. DOI: https://doi.org/10.1016/bs.adomc.2018.02.004.

12. Synthesis and coordination chemistry of aminophosphine derivatives of adenine / Q. Zhang et al // Dalton Trans. – 2003. – Vol. 16. – P. 3250-3257. DOI: https://doi.org/10.1039/B303715K.

13. Arrayás R.G. Recent Applications of Chiral Ferrocene Ligands in Asymmetric Catalysis / R.G. Arrayás, J. Adrio, J.C. Carretero // Wiley. – 2006. – Vol. 46. – P. 7674-7715. DOI: https://doi.org/10.1002/anie.200602482.

14. Sutcliffe O.B. Planar chiral 2-ferrocenyloxazolines and 1,1′-bis (oxazolinyl) ferrocenes – syntheses and applications in asymmetric catalysis / O.B. Sutcliffe, M.R. Bryce // Tetrahedron. – 2003. – Vol. 14. – P. 2297-2325. DOI: https://doi.org/10.1016/S0957-4166(03)00520-2.

15. Chiral C2-symmetricη 6 -p-cymene-Ru(II)-phosphinite complexes: Synthesis and catalytic activity in asymmetric reduction of aromatic, methyl alkyl and alkyl/aryl ketones / D.E. Karakas et al // Inorg. Chim. Acta. – 2017. – Vol. 471. – P. 430-439. DOI: https://doi.org/10.1016/j.ica.2017.11.044.

16. Sun S. Exploration of chiral diastereomeric spiroketal (SPIROL)-based phosphinite ligands in asymmetric hydrogenation of heterocycles / S. Sun, P. Nagorny // Chem. Commun. – 2020. – Vol. 56. – P. 8432-8435. DOI: https://doi.org/10.1039/d0cc03088k.

17. Phosphine-Phosphinite and Phosphine-Phosphite Ligands: Preparation and Applications in Asymmetric Catalysis / H. Fernandez-Perez et al // Chem. Rev. – 2011. – Vol. 111. – P. 2119-2176. DOI: https://sci-hub.se/10.1021/cr100244e.

18. Woodwarda S. Use of sugar-based ligands in selective catalysis: Recent developments / S. Woodwarda, M. Dieguez, O. Pamies // Coord. Chem. Rev. – 2010. – Vol. 254. – P. 2007-2030. DOI: https://doi.org/10.1016/j.ccr.2010.03.005.

19. Isik U. Novel mononuclear metal-phosphinite compounds and catalytic performance in transfer hydrogenation of ketones / U. Isik, N. Meri̇c, M. Aydemir // Middle East J. Sci. – 2022. – Vol. 8. – P. 1-15. DOI: https://doi.org/10.51477/mejs.1077805.

20. Gonzalez-Fernandez R. Half-sandwich ruthenium (ii)complexes with tethered arene-phosphinite ligands: synthesis, structure and application in catalytic cross dehydrogenative coupling reactions of silanes and alcohols / R. Gonzalez-Fernandez, P. Crochet, V. Cadierno // Dalton Trans. – 2020. – Vol. 49. – P. 210. DOI: https://doi.org/10.1039/c9dt04421c.

21. Woodwarda S. Use of sugar-based ligands in selective catalysis: Recent developments / S. Woodwarda, M. Dieguez, O. Pamies // Coord. Chem. Rev. – 2010. – Vol. 254. – P. 2007–2030. DOI: https://doi.org/10.1016/j.ccr.2010.03.005.

22. Synthesis of half-sandwich ruthenium(II) and iridium(III) complexes containing imidazole-based phosphinite ligands and their use in catalytic transfer hydrogenation of acetophenone with isopropanol / U. Isik et al // J. Organomet. Chem. – 2023. – Vol. 998. – P. 122800. DOI: https://doi.org/10.1016/j.jorganchem.2023.122800/

23. Review of Phosphorus Chemistry in the Thermal Conversion of Biomass: Progress and Perspectives / E.O. Olsson et al // Energy Fuels. – 2023. – Vol. 37. – P. 6907-6998. DOI: https://doi.org/10.1021/acs.energyfuels.2c04048.

24. Ketone transfer hydrogenation reactions catalyzed by catalysts based on a phosphinite ligand / D.E. Karakas et al // J. Coord. Chem. – 2022. – Vol. 75. – P. 493-506. DOI: https://doi.org/10.1080/00958972.2022.2054339.

25. Gong J. Transition Metal Pincer Complexes With Chiral Imidazoline Donor(s) / J. Gong, X. Zhu, M. Song // Elsevier Inc. – 2018. – P. 191-218. DOI: https://doi.org/10.1016/b978-0-12-812931-9.00009-8.

26. Radai Z. Synthesis and Reactions of α-Hydroxyphosphonates / Z. Radai, G. Keglevich // Molecules. – 2018. – Vol. 23. – P. 1493. DOI: https://doi.org/10.3390/molecules23061493.

27. Firouzabadi H. 2-Aminophenyl diphenylphosphinite as an easily accessible ligand for heterogeneous palladium-catalyzed Suzuki-Miyaura reaction in water in the absence of any organic co-solvent / H. Firouzabadi, N. Iranpoor, M. Gholinejad // J. Organomet. Chem. – 2010. – Vol. 695. – P. 2093-2097. DOI: https://doi.org/10.1016/j.jorganchem.2010.05.016.

28. Exploring the Versatility of N-Pyrazole, P-Phosphinite Hybrid Ligands against Pd(II). From Monomers and Dimers to One-Dimensional Chain, Two-Dimensional Layer Polymers and Three-Dimensional Networks / S. Munoz et al // Cryst. Growth Des. – 2012. – Vol. 12. – P. 6234-6242. DOI: https://doi.org/10.1021/cg3014333.

29. Aydemir M. Applications of transition metal complexes containing 3,3′- bis(diphenylphosphinoamine)-2,2′-bipyridine ligand to transfer hydrogenation of ketones / M. Aydemir, N. Meri̇c, A. Baysal // J. Organomet. Chem. – 2012. – Vol. 720. – P. 38-45. DOI: https://doi.org/10.1016/j.jorganchem.2012.08.031.

30. Metal-Metal Interactions in C3-Symmetric Diiron Imido Complexes Linked by Phosphinoamide Ligands / S. Kuppuswamy et al // Inorg. Chem. – 2013. – Vol. 52. – P. 4802-4811. DOI: https://doi.org/10.1021/ic302108k.

31. A DFT Protocol for the Prediction of 31P NMR Chemical Shifts of Phosphine Ligands in First-Row Transition-Metal Complexes / P. Payard et al // Organometallics. – 2020. – Vol. 39. – P. 3121- 3130. DOI: https://doi.org/10.1021/acs.organomet.0c00309.

32. Adhikary A. Catalysis Involving Phosphinite-Based Metallacycles / A. Adhikary, H. Guan // ACS Catal. – 2015. – Vol. 5. – P. 6858-6873. DOI: https://doi.org/10.1021/acscatal.5b01688.

33. Iridium Complexes as Highly Selective Catalysts: Asymmetric Hydrogenation of Trisubstituted Alkenes. Angew / D. Rageot et al // Chem. Int. Ed. – 2011. – Vol. 13. – P. 3020-3035. DOI: https://doi.org/10.1002/anie.201104105.

34. Synthesis and structures of a chiral phosphine-phosphoric acid ligand and its rhodium(I) complexes / T. Iwai et al // Tetrahedron. – 2015. – Vol. 26. – P. 1245-1250. DOI: https://doi.org/10.1016/j.tetasy.2015.09.016.

35. Romero‐Canelon I. Next-Generation Metal Anticancer Complexes: Multitargeting via Redox Modulation / I. Romero‐Canelon, P.J. Sadler // Inorg. Chem. – 2013. – Vol. 52. – P. 12276-12291. DOI: https://doi.org/10.1021/ic400835n.

36. Kharisov B.I. Coordination and organometallic compounds in the functionalization of carbon nanotubes / B.I. Kharisov, O.V. Kharissova // J. Coord. Chem. – 2014. – Vol. 67. – P. 3769-3808. DOI: https://doi.org/10.1080/00958972.2014.888063.

37. Structure-Activity Relationships of Targeted RuII(η 6 -p-Cymene) Anticancer Complexes with Flavonol-Derived Ligands / A. Kurzwernhart et al // J. Med. Chem. – 2012. – Vol. 55. – P. 10512- 10522. DOI: https://doi.org/10.1021/jm301376a.

38. Popp J. Facile Arene Ligand Exchange in p-Cymene Ruthenium(II) Complexes of Tertiary PChiral Ferrocenyl Phosphines / J. Popp, S. Hanf, E. Hey‐Hawkins // ACS Omega. – 2019. – Vol. 4. – P. 22540-22548. DOI: https://doi.org/10.1021/acsomega.9b03251.

39. Ritleng V. Ruthenacycles and Iridacycles as Transfer Hydrogenation Catalysts / V. Ritleng, J.G. Vries // Molecules. – 2021. – Vol. 6. – P. 4076. DOI: https://doi.org/10.3390/molecules26134076.

40. Cruchter T. Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands / T. Cruchter, V.A. Larionov // Coord. Chem. Rev. – 2018. – Vol. 376. – P. 95-113. DOI: https://doi.org/10.1016/j.ccr.2018.08.002.

41. Catalytic Nitrile Hydration with [Ru(η 6 -p-cymene)Cl2(PR2R′)] Complexes: Secondary Coordination Sphere Effects with Phosphine Oxide and Phosphinite Ligands / S.M. Knapp et al // Organometallics. – 2013. – Vol. 32. – P. 3744-3752. DOI: https://doi.org/10.1021/om400380j.

42. Astruc D. Why is Ferrocene so Exceptional? / D. Astruc // Eur. J. Inorg. Chem. – 2016. – P. 6- 29. DOI:https://doi.org/10.1002/ejic.201600983.

43. Cunningham L. Recent developments in the synthesis and applications of chiral ferrocene ligands and organocatalysts in asymmetric catalysis / L. Cunningham, A. Benson, P.J. Guiry // Org. Biomol. Chem. – 2020. – Vol. 18. – P. 9329-9370. DOI: https://doi.org/10.1039/d0ob01933j.

44. Noncovalent Interaction-Assisted Ferrocenyl Phosphine Ligands in Asymmetric Catalysis / Q. Zhao et al // Acc. Chem. Res. – 2020. – Vol. 53. – P. 1905-1921. DOI: https://doi.org/10.1021/acs.accounts.0c00347.

45. The design, synthesis and application of imidazolium-tagged ferrocenyl oxazoline phosphine ligands for the asymmetric 1,3-dipolar cycloaddition of azomethine ylides with nitroalkenes: ion effect for enhancing the reactivity, stereoselectivity and recyclability / L. Dai et al // Tetrahedron: Asymmetry. – 2015. – Vol. 26. – P. 350-360. DOI: https://doi.org/10.1016/j.tetasy.2015.02.009.

46. Novel ruthenium and palladium complexes as potential anticancer molecules on SCLC and NSCLC cell lines / O. Tokgun et al // Chem. Pap. – 2020. – Vol. 74. – P. 2883-2892. DOI: http://dx.doi.org/10.1007/s11696-020-01129-x.

47. Horak K.T. Dioxygen Reduction by a Pd(0)–Hydroquinone Diphosphine Complex / K.T. Horak, T. Agapie // J. Am. Chem. Soc. – 2016. – Vol. 138. – P. 3443-3452. DOI: https://doi.org/10.1021/jacs.5b12928.

48. The 2‐(4‐Phenyl‐1H‐1,2,3‐triazol‐1‐yl)ethanol ‐ Based Phosphinite Ligand Ph2POCH2CH2[1,2,3‐ N3C(Ph)C(H)] – Synthesis, Transition‐Metal Complexes, and Structural Studies / В. Choubey et al // Eur. J. Inorg. Chem. – 2018. – P. 1707-1714. DOI: https://doi.org/10.1002/ejic.201701058.

49. A modular design of ruthenium(II) catalysts with chiral C2-symmetric phosphinite ligands for effective asymmetric transfer hydrogenation of aromatic ketones / M. Aydemir et al // Tetrahedron: Asymmetry. – 2010. – Vol. 21. – P. 703-710. DOI: https://doi.org/10.1016/j.tetasy.2010.04.002.

50. Indenyl Rhodium Complexes with Arene Ligands: Synthesis and Application for Reductive Amination / V.B. Kharitonov et al // Organometallics. – 2018. – Vol. 37. – P. 2553-2562. DOI: https://doi.org/10.1021/acs.organomet.8b00311.

51. New insight into the role of a base in the mechanism of imine transfer hydrogenation on a Ru(ii) half-sandwich complex / М. Kuzma et al // Dalton Trans. – 2013. – Vol. 42. – P. 5174-5182. DOI: https://doi.org/10.1039/c3dt32733g.

52. Fluorine/phenyl chelated boron complexes: Synthesis, fluorescence properties and catalyst for transfer hydrogenation of aromatic ketones / A. Kilic et al // J. Fluorine Chem. – 2014. – Vol. 62. – P. 9-16. DOI: https://doi.org/10.1016/j.jfluchem.2014.03.004.

53. Rhodium-catalyzed transfer hydrogenation with functionalized bis(phosphino)amine ligands / M. Aydemir et al // Inorg. Chim. Acta – 2013. – Vol. 398. – P. 1-10. DOI: https://doi.org/10.1016/j.ica.2012.12.005.

54. Synthesis of ruthenium (II) complexes containing a dihydroperimidine-derived phosphine ligand and their application in transfer hydrogenation of ketones / Q. Fu et al // Inorg. Chem. Commun. – 2013. – Vol. 38. – P. 28-32. DOI: http://dx.doi.org/10.1016/j.inoche.2013.10.013.

55. Novel Neutral Phosphinite Bridged Dinuclear Ruthenium(II) Arene Complexes and their Catalytic Use in Transfer Hydrogenation of Aromatic Ketones: Xray Structure of a New Schiff Base, N3,N3′-Di2-Hydroxybenzylidene- [2,2′]bipyridinyl-3,3′-Diamine / M. Aydemir et al // J. Mol. Catal. A: Chem. – 2010. – Vol. 326. – P. 75-81. DOI: https://doi.org/10.1016/j.molcata.2010.04.010.

56. Raja N. Binuclear Ruthenium(II) Pyridazine Complex Catalyzed Transfer Hydrogenation of Ketones / N. Raja, R. Ramesh // Tetrahedron Lett. – 2012. – Vol. 53. – P. 4770-4774. DOI: https://doi.org/10.1016/j.tetlet.2012.06.119.

57. The Application ̧ of Tunable Tridentate P-Based Ligands for the Ru(II)-Catalysed Transfer Hydrogenation of Various Ketones / N. Meric et al // Appl. Organomet. Chem. – 2014. – Vol. 28. – P. 803-808. DOI: http://dx.doi.org/10.1002/aoc.3202.

58. Zheng C. Transfer Hydrogenation with Hantzsch Esters and Related Organic Hydridedonors / C. Zheng, S.L. You // Chem. Soc. Rev. – 2012. – Vol. 41. – P. 2498-2518. DOI: https://doi.org/10.1039/C1CS15268H.

59. Iridium-Catalyzed Hydrogenation of N-Heterocyclic Compounds under Mild Conditions by an Outer-Sphere Pathway / G.E. Dobereiner et al // J. Am. Chem. Soc. – 2011. – Vol. 133. – P. 7547- 7562. DOI: https://doi.org/10.1021/ja2014983.

60. Wang Y., Huang Z., LiuG.,Huang Z. A New Paradigm in Pincer Iridium Chemistry: PCN Complexes for (De)Hydrogenation Catalysis and Beyond // Acc. Chem. Res., – 2022. – Vol. 55. – P. 2148-2161. DOI:https://doi.org/10.1021/acs.accounts.2c00311

61. Grieco G., Blacque O. Solution and Solid‐State Structure of the First NHC‐Substituted Rhenium Heptahydrides // Eur. J. Inorg. Chem., – 2019. – P. 3810-3819. DOI: https://doi.org/10.1002/ejic.201900712

62. Renkema K.B. Mechanism of Alkane Transfer Dehydrogenation Catalyzed by a Pincer-Ligated Iridium Complex / K.B. Renkema, Y.V. Kissin, A.S. Goldman // J. Am. Chem. Soc. – 2003. – Vol. 125. – P. 7770-7771. DOI: https://doi.org/10.1021/ja0289200.

63. Regioselective Gas-Phase n-Butane Transfer Dehydrogenation via Silica-Supported Pincer-Iridium Complexes / B. Sheludko et al // Chem. Cat. Chem. – 2021. – Vol. 13. – P. 407-415. DOI: https: //chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cctc.202001399.

64. A suitable modified palladium immobilized on imidazolium supported ionic liquid catalysed transfer hydrogenation of nitroarenes / R. Shanmugapriya et al // J. Organomet. Chem. – 2021. – Vol. 49. – P. 121935. DOI: https://doi.org/10.1016/j.jorganchem.2021.121935.

65. Patil N.M. Immobilized Iron Metal-Containing Ionic Liquid-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes into Anilines / N.M. Patil, T. Sasaki, B.M. Bhanage // ACS Sustainable Chem. Eng. – 2016. – Vol. 4. – P. 429-436. DOI: https://doi.org/10.1021/acssuschemeng.5b01453.

66. Coordinating Chiral Ionic Liquids: Design, Synthesis, and Application in Asymmetric Transfer Hydrogenation under Aqueous Conditions / M. Vasiloiu et al // Eur. J. Org. Chem. – 2015. – Vol. 11. – P. 2374-2381. DOI: https://doi.org/10.1002/ejoc.201403555.

67. Preparation of Chiral Ligands Connected with Quaternary Ammonium Group for Recyclable Catalytic Asymmetric Transfer Hydrogenation in Ionic Liquid / Н. Uchimoto et al // Chem. Pharm. Bull. – 2015. – Vol. 63. – P. 200-209. DOI: https://doi.org/10.1248/cpb.c14-00747.

68. Asymmetric Transfer Hydrogenation Reaction in Water: Comparison of Chiral Proline Amide/Amine Ruthenium (II) Complexes / S. Denizalti et al // J. Organomet. Chem. – 2015. – Vol. 779. – P. 62-66. DOI: http://dx.doi.org/10.1016/j.jorganchem.2014.12.023.

69. Direct Synthesis of Hydrogen Peroxide in Water by Means of a Rh-Based Catalyst / S. Ogo et al // Organometallics. – 2020. – Vol. 39. – P. 3731-3741. DOI: https://doi.org/10.1021/acs.organomet.0c00565.

70. An Outstanding Catalyst for Asymmetric Transfer Hydrogenation in Aqueous Solution and Formic Acid/Triethylamine / D.S. Matharu et al // Chem. Inform. – 2006. – Vol. 37. – P. 49. DOI: https://doi.org/10.1002/chin.200649028.

71. Transfer Hydrogenation in Aqueous Media / Y. Wei et al // Catal. Today. – 2015. – Vol. 247. – P. 104-116. DOI: http://dx.doi.org/10.1016/j.cattod.2014.03.066.

72. Das S. Organocatalytic Asymmetric Transfer Hydrogenation Reactions / S. Das, V.N. Wakchaure, B. List // Asymm. Hyd. Trans. Hyd. – 2021. – P. 339-373. DOI: https://doi.org/10.1002/9783527822294.ch11.

73. Robertson A. The Development of Aqueous Transfer Hydrogenation Catalysts / A. Robertson, T. Matsumoto, S. Ogo // Dalton Trans. – 2011. – Vol. 40. – P. 10304-10310. DOI: https://doi.org/10.1039/C1DT10544B.

74. Dehalogenation of organic halides in aqueous media by hydrogen transfer from formate catalyzed by water-soluble Ru(II)-N-heterocyclic carbene complexes / N. Marozsan et al // J. Mol. Catal: A Chem. – 2016. – Vol. 425. – P. 103-109. DOI: https://doi.org/10.1016/j.molcata.2016.09.036.

75. Khamis N. Heterocycle-containing Noyori-Ikariya catalysts for asymmetric transfer hydrogenation of ketones / N. Khamis, G.J. Clarkson, M. Will // Dalton Trans. – 2022. – Vol. 51. – P. 13462-13469. DOI: https://doi.org/10.1039/D2DT02411J.

76. Muniyappan P. Ru(II) complexes containing NOO donors of tridentate Schiff base ligands: Synthesis, characterization, crystal structure and catalytic activity in transfer hydrogenation of ketones / P. Muniyappan, V. Paranthaman, V. Galmari // Chem. Inorg. Mat. – 2023. – Vol. 1. – P. 100003. DOI: https://doi.org/10.1016/j.cinorg.2023.100003.

77. Gorgas N. Chemoselective transfer hydrogenation of aldehydes in aqueous media catalyzed by a well-defined iron(II) hydride complex / N. Gorgas, A. Ilic, K. Kirchner // Springer Ser. Chem. Phys. – 2019. – Vol. 150. – P. 121-126. DOI: https://doi.org/10.1007/s00706-018-2279-7.

78. Water‐Soluble Arene Ruthenium Complexes Containing a trans‐1,2‐Diaminocyclohexane Ligand as Enantioselective Transfer Hydrogenation Catalysts in Aqueous Solution / J. Canivet et al // Eur. J. Inorg. Chem. – 2005. – Vol. 22. – P.4493-4500. DOI: https://doi.org/10.1002/ejic.200500498.

79. Ariger M.A. pH-Independent Transfer Hydrogenation in Water: Catalytic, Enantioselective Reduction of β-Keto Esters / M.A. Ariger, E.M. Carreira // Org. Lett. – 2012. – Vol. 14. – P. 4522- 4524. DOI: https://doi.org/10.1021/ol301903c.

80. Wu X. Transfer Hydrogenation in Water / X. Wu, C. Wang, J. Xiao // J. Chem. Soc. – 2016. – Vol. 16. – P. 2772-2786. DOI: https://doi.org/10.1002/tcr.201600089.

81. Butler R.N. Water: Nature’s Reaction Enforcer Comparative Effects for Organic Synthesis «In-Water» and «On-Water» / R.N. Butler, A.G. Coyne // Chem. Rev. – 2010. – Vol. 110. – P. 6302- 6337. DOI: https://doi.org/10.1021/cr100162c.

82. Unexpectedly Fast Catalytic Transfer Hydrogenation of Aldehydes by Formate in 2- Propanol−Water Mixtures under Mild Conditions / I. Szatmari et al // Сatal. Today. – 2015. – Vol. 247. – P. 14-19. DOI: https://doi.org/10.1016/j.cattod.2014.06.023.

83. Chen S.J. A Base-Controlled Chemoselective Transfer Hydrogenation of Alpha, Beta-Unsaturated Ketones Catalyzed by [IrCp*Cl-2](2) with 2-Propanol / S.J. Chen, G.P. Lu // RSC Adv. – 2015. – Vol. 5. – P. 13208-13211. DOI: https://doi.org/10.1039/C5RA00484E.

84. Bifunctional Rhenium Complexes for the Catalytic Transfer-Hydrogenation Reactions of Ketones and Imines / А. Landwehr et al // Chem. Eur. J. – 2012. – Vol. 18. – P. 5701-5714. DOI: https://doi.org/10.1002/chem.201103685.

85. Mechanistic Studies on Ruthenium(II)-Catalyzed Base-Free Transfer Hydrogenation Triggered by Roll-Over Cyclometalation / С. Kerner et al // Chem. Eur. J. – 2017. – Vol. 82. – P. 212-224. DOI: https://doi.org/10.1002/cplu.201600526.

86. Burling S. Direct and Transfer Hydrogenation of Ketones and Imines with a Ruthenium NHeterocyclic Carbene Complex / S. Burling, M.K. Whittlesey, J.M. Williams // Adv. Synth. Catal. – 2005. – Vol. 347. – P. 591-594. DOI: http://dx.doi.org/10.1002/adsc.200404308.

87. Long J. Transfer Hydrogenation of Unsaturated Bonds in the Absence of Base Additives Catalyzed by a Cobalt-Based Heterogeneous Catalyst / J. Long, Y. Zhou, Y. Li // Chem. Commun. – 2015. – Vol. 51. – P. 2331-2334. DOI: https://doi.org/10.1039/C4CC08946D.

88. Blaser H.U. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions / H.U. Blaser, H.J. Federsel // Eds. Asymmetric Catalysis on Industrial Scale. Wiley-VCH: Weinheim. – 2010. – P. 13-25. DOI: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527630639

89. Ohkuma T. Advancement in Catalytic Asymmetric Hydrogenation of Ketones and Imines, and Development of Asymmetric Isomerization of Allylic Alcohols / T. Ohkuma, N. Arai // TheChem. Rec. – 2016. – Vol.16. – P. 2201-2819. DOI: https://doi.org/10.1002/tcr.201600101.

90. Bullock R.M. Catalytic Ionic Hydrogenations / R.M. Bullock // Chem. Eur. J. – 2004. – Vol. 10. – P. 2366-2374. DOI: https://doi.org/10.1002/chem.200305639.

91. Dou X. Synthesis of Planar Chiral Shvo Catalysts for Asymmetric Transfer Hydrogenation / X. Dou, T. Hayashi // Adv. Synth. Catal. – 2016. – Vol. 358. – P. 1054-1058. DOI: https://doi.org/10.1002/adsc.201501162.

92. Ruthenium-Catalyzed E-Selective Partial Hydrogenation of Alkynes under Transfer-Hydrogenation Conditions using Paraformaldehyde as Hydrogen Source / M.N. Fetzer et al // Chem. Cat. Chem. – 2021. – Vol. 13. – P. 1317-1325. DOI: https://doi.org/10.1002/cctc.202001411.

93. Selective ruthenium-catalyzed methylation of 2-arylethanols using methanol as C1 feedstock / Y. Li et al // Chem. Commun. – 2014. – Vol. 50. – P. 14991-14994. DOI: https://doi.org/10.1039/c4cc06933a.

94. Discovery, Applications, and Catalytic Mechanisms of Shvo’s Catalyst / B.L. Conley et al // Chem. Rev. – 2010. – Vol. 110. – P. 2294-2312. DOI: https://doi.org/10.1021/cr9003133.

95. Wang C. Hydrogenation of imino bonds with half-sandwich metal catalysts / C. Wang, B. Villa‐ Marcos, J. Xiao // Chem. Commun. – 2011. – Vol. 47. – P. 9773-9785. DOI: https://doi.org/10.1039/c1cc12326b.

96. J.Transition metal hydrides as active intermediates in hydrogen transfer reactions / G. Csjernyk et al // J. Organomet. Chem. – 2002. – Vol. 67. – P. 1657-1662. DOI: https://doi.org/10.1016/S0022-328X(02)01316-5.

97. Liu J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer / J. Liu, A. Gudmundsson, J. Backvall // Angew. Chem. Int. Ed. – 2021. – Vol. 60. – P. 15686-15704. DOI: https://doi.org/10.1002/anie.202012707.

98. Verho O., Backvall J. Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines / O. Verho, J. Backvall // J. Am. Chem. Soc. – 2015. – Vol. 137. – P. 3996-4009. DOI: https://doi.org/10.1021/jacs.5b01031.

99. Warner M.C. Shvo’s Catalyst in Hydrogen Transfer Reactions / M.C. Warner, C.P. Casey, J. Backvall // Bifunc. Mol. Catal. – 2011. – Vol. 37. – P. 85-125. DOI:https://doi.org/10.1007/3418_2011_7.

100. Varying the ratio of formic acid to triethylamine impacts on asymmetric transfer hydrogenation of ketones / X. Zhou et al // J. Mol. Catal. – 2012. – Vol. 357. – P. 133-140. DOI:https://doi.org/10.1016/j.molcata.2012.02.002.

101. Muthaiah S. Acceptorless and Base‐Free Dehydrogenation of Alcohols and Amines using Ruthenium‐Hydride Complexes / S. Muthaiah, S.H. Hong // Adv. Synth. Catal. – 2012. – Vol. 354. – P. 3045-3053. DOI:https://doi.org/10.1002/adsc.201200532.

102. Mechanism of transfer hydrogenation of carbonyl compounds by zirconium and hafniumcontaining metal-organic frameworks / M.S. Rahaman et al // J. Mol. Catal. – 2022. – Vol. 522. – P. 112247. DOI: https://doi.org/10.1016/j.mcat.2022.112247/


Рецензия

Для цитирования:


Турсынбек С.Е., Рафикова Х.С., Дембицкий В.М., Золотарева Д.С., Белянкова Е.О. СИНТЕЗ И ПРИМЕНЕНИЕ ФОСФИНИТОВЫХ РУТЕНИЙ СОДЕРЖАЩИХ КАТАЛИЗАТОРОВ В ТРАНСФЕРНОМ ГИДРИРОВАНИИ. Вестник Университета Шакарима. Серия технические науки. 2024;(3(15)):283-299. https://doi.org/10.53360/2788-7995-2024-3(15)-38

For citation:


Tursynbek S.Ye., Rafikova Kh.S., Dembitsky V.M., Zolotareva D.S., Belyankova Ye.O. SYNTHESIS AND APPLICATION OF PHOSPHINITE LIGAND-CONTAINING RUTHENIUM CATALYSTS IN TRANSFER HYDROGENATION. Bulletin of Shakarim University. Technical Sciences. 2024;(3(15)):283-299. https://doi.org/10.53360/2788-7995-2024-3(15)-38

Просмотров: 164


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X