INVESTIGATION OF THE DYNAMICS OF THE RESPONSE OF THE REFRIGERATION SYSTEM UNDER CONDITIONS OF SEVERE HEAT EXPOSURE
https://doi.org/10.53360/2788-7995-2025-4(20)-67
Abstract
This article presents an assessment of the performance of a vapor-compression refrigeration system under shock thermal load. The study was carried out on a modernized experimental stand «Kholodilnik-2» equipped with a digital monitoring system, including 24 DS18B20 sensors and an STM32 microcontroller. The main objective was to compare the system behavior when introducing an object with temperatures of 40, 60, and 80°C after reaching a quasi-steady-state mode. Temperature curves, transient process duration, and stabilization times were analyzed. Additionally, features of temperature distribution inside the freezer compartment and the influence of thermal load on the main elements of the cycle were examined.
The scientific novelty of the study lies in the comprehensive analysis of transient processes occurring under sudden thermal impacts, with a focus on their duration and system stability. The practical significance of the work is related to the possibility of applying the obtained results to optimize the operating modes of refrigeration systems and to diagnose faults under conditions close to real operation. The optimal regime was found at 60°C, which ensures a balance between transient process duration and uniformity of temperature distribution.
About the Authors
M. YermolenkoKazakhstan
Yermolenko Mikhail – PhD in Engineering, Associate Professor, Department of Technical Physics and Heat Power Engineering
071412, Republic of Kazakhstan, Semey, 20 A Glinka Street
D. Nurgaliyev
Kazakhstan
Nurgaliev Daniyar – Master of Engineering Sciences, Senior Lecturer, Department of Technical Physics and Heat Power Engineering
071412, Republic of Kazakhstan, Semey, 20 A Glinka Street
S. Elistratov
Russian Federation
Sergey Elistratov – Doctor of Technical Sciences, Associate Professor
630073, Russian Federation, Novosibirsk, K. Marx Ave., 20
A. Satybaldinova
Kazakhstan
Satybaldinova Aigerim – Master of Engineering Sciences, Lecturer, Department of Technical Physics and Heat Power Engineering
071412, Republic of Kazakhstan, Semey, 20 A Glinka Street
A. Karnakova
Kazakhstan
Karnakova Ayazhan – first-year student of the specialty «Theoretical Physics»
071412, Republic of Kazakhstan, Semey, 20 A Glinka Street
References
1. Yasuda, H., Yanagisawa, T., & Izushi, M. A Dynamic Model of a Vapor Compression Refrigeration Cycle. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 11(3), 263-275 (1994).
2. Aized, T., Rashid, M., Riaz, F., Hamza, A., Nabi, H. Z., Sultan, M., Ashraf, W. M., & Krzywanski, J. Energy and Exergy Analysis of Vapor Compression Refrigeration System with Low-GWP Refrigerants, Energies, 15(19), 7246 (2022).
3. Eleiwi, M. A. An Experimental Study on a Vapor Compression Refrigeration Cycle by Adding Internal Heat Exchanger. Tikrit Journal of Engineering Sciences.
4. He, Z., Wang, T., Guo, J., & Peng, X. Investigation of the Thermodynamic Process of the Refrigerator Compressor Based on the m-θ Diagram, Energies, 10(10), 1517 (2017).
5. Tantekin, A. Thermodynamic Analysis of Vapor Compression Refrigeration System with Various Refrigerants, Karadeniz Fen Bilimleri Dergisi, 15(1), 392-405 (2025).
6. Sarioğlu, K. & Yıldız, G. Performance Investigation of a Vapor Compression Refrigeration System with and without Heat Exchanger Using Mono and Hybrid Nanofluids (R1234yf), Gazi University Journal of Science Part C, 13(1), 169-186 (2025).
7. Gabibov, I. A., Nadjafkulieva, R. S., & Abasova, S. M. Modeling the Heat Transfer Process in Refrigeration Units Used in the Oil Industry, EUREKA: Physics and Engineering (2019).
8. Rodríguez, D., Bejarano, G., Vargas, M., Lemos, J. M., & Ortega, M. G. Modelling and Cooling Power Control of TES-Backed Up Vapour-Compression Refrigeration System. arXiv preprint (2024).
9. Vovchenko, I. V., Zyablovsky, A. A., Pukhov, A. A., & Andrianov, E. S. Second-Law-Allowed Temporal Cooling of the Coldest Reservoir Without External Refrigeration. arXiv preprint (2024).
10. Bolaji, B. O., Huan, Z. Ozone depletion and global warming: Case for the use of natural refrigerants – A review. Renewable and Sustainable Energy Reviews, 18, 2013, pp. 49–54.
11. Hermes, C. J. L. Dynamic behavior of vapor compression refrigeration systems: Modeling and simulation. International Journal of Refrigeration, 34(6), 2011, pp. 1482–1493.
12. Kaya, M., Kilic, B. Transient thermal analysis of refrigeration systems under variable loads. Applied Thermal Engineering, 145, 2018, pp. 742–752.
13. Вклад молодежного потенциала в модернизацию Казахстана 3.0: Сборник докладов Международной молодежной научно-практической конференции / Гл. ред. А.Б. Найзабеков, - Рудный: Рудненский индустриальный институт, 2018, 454-457 с.
14. Д.Н. Нургалиев, М.В. Ермоленко, А.Б. Касымов, И.А. Жолбарысов Конденсатордың жартылай бітелуі мен жеткіліксіз өнімділігі тоңазытқыш қондырғылардың тиімді жұмысына әсері // Семей қаласының Шәкәрім атындағы Мемлекеттік университетінің хабаршысы. 2020. №4 (92). С. 96-100.
15. Д.Н. Нургалиев, М.В. Ермоленко, О.А. Степанова, А.Е. Сатыбалдинова Тоңазытқыштың ақау жағдайында жұмыс істеу принципі // Вестник НЯЦ РК периодический научно-технический журнал национального ядерного центра Республики Казахстан. 2023. №1 (93). С. 48-54.
16. Сакун А.А. Холодильные машины и тепловые насосы: теория, расчёт и эксплуатация. - М.: Машиностроение, 1988. - 320 с.
Review
For citations:
Yermolenko M., Nurgaliyev D., Elistratov S., Satybaldinova A., Karnakova A. INVESTIGATION OF THE DYNAMICS OF THE RESPONSE OF THE REFRIGERATION SYSTEM UNDER CONDITIONS OF SEVERE HEAT EXPOSURE. Bulletin of Shakarim University. Technical Sciences. 2025;1(4(20)):564-572. https://doi.org/10.53360/2788-7995-2025-4(20)-67
JATS XML















