Preview

Bulletin of Shakarim University. Technical Sciences

Advanced search

THE INFLUENCE OF MECHANICAL ACTIVATION ON THE STRUCTURAL-PHASE STATES AND HYDROGEN ABSORPTION PROPERTIES OF THE INTERMETALLIC COMPOUND LANI – REVIEW

https://doi.org/10.53360/2788-7995-2025-4(20)-64

Abstract

The article provides an overview of a number of studies on the use of alloys and intermetallic compounds for hydrogen storage. Among them, a particularly important place is occupied by the inter-metallic compound LaNi₅ eye. The latest achievements in the development of intermetallic compounds of the AB₅-type are analyzed. These compounds, in particular LaNi₅ and its alloyed counterparts, are widely used due to the ability to regulate their properties by replacing elements. The article also provides an overview of the methods of synthesis and modification of AB5 alloys aimed at improving their efficiency in hydrogen technologies. Both traditional production methods and modern technological approaches, including Spark plasma sintering and mechanical activation, are considered. A review of the scientific literature has shown that mechanical activation is an effective way to modify the LaNi₅ intermetallic compound to improve its hydrogen absorption properties. According to a number of studies, the effect of high-energy ball milling leads to significant changes in the microstructure of the material. It is shown that to increase the effectiveness of practical applications of LaNi5 in hydrogen energy, additional comprehensive studies are needed to establish the relationship between mechanical processing parameters, structural characteristics, and functional properties of the material.The aim of this work is to use mechanical activation to modify the microstructure of a material, reduce the size of crystallites, increase the density of defects, and promote the formation of amorphous or nanostructured states, which together can significantly affect the structure and interactions with hydrogen.

About the Authors

M. Skakov
National Nuclear Center of the Republic of Kazakhstan
Kazakhstan

Mazhyn Skakov – Doctor of Physical and Mathematical Sciences, Chief Researcher

180010, Republic of Kazakhstan Kurchatov, Beibyt atom st., 2 B



N. Mukhamedova
National Nuclear Center of the Republic of Kazakhstan
Kazakhstan

Nuriya Mukhamedova – PhD, Head of the Laboratory of Advanced Materials, branch of the Institute of Atomic Energy

180010, Republic of Kazakhstan Kurchatov, Beibyt atom st., 2 B



A. Nassyrova
Sarsen Amanzholov East Kazakhstan University
Kazakhstan

Anar Nassyrova – Doctoral student of the educational program 8D05301 – «Physics» 

070000, Republic of Kazakhstan, Ust-Kamenogorsk, st. 30th Guards Division, 34 



References

1. Problemy akkumulirovaniya i hraneniya vodoroda himicheskie problemy / O.K. Fateev et al // Shemical problems, Rossiya. – 2018. – № 4(16) – H.453-483. (In Russian).

2. Effektivnye gidridoobrazuyushchie materialy na osnove LaNi5 dlya sistem akkumulirovaniya energii / A.N. Kazakov et al // Rossijskie nanotekhnologii. – 2021. – tom 16, № 2. – Р. 208-214. https://doi.org/10.1134/S1992722321020084. (In Russian).

3. Konik P.A. Sorbc. i gazorazd. svojstva kompozic.membrannyh materialov s metallorganicheskimi koordinacionnymi polimerami i gidridoobrazuyushchimi splavami v kachestve aktivnyh napolnitelej / P.A. Konik. – Moskva, 2020. – 246 s. (In Russian).

4. Vliyanie mekhanicheskoj aktivacii intermetallicheskogo soedineniya LaNi2.5 So2.4 Mn0.1 na absorbciyu vodoroda / P.A. Konik et al // Zhurnal fizicheskoj himii. – 2020. – tom 94, № 5, S. 784-788. https://doi.org/10.31857/S004445372005012X. (In Russian).

5. Hydrogen Absorption Reactions of Hydrogen Storage Alloy LaNi5 under High Pressure / S. Toyoto et al // Molecules. – 2023. – № 28(3). – Р. 1256. https://doi.org/10.3390/molecules28031256. (In Russian).

6. Tarasov B.P. Fiziko-himicheskie osnovy sozdaniya effektivnyh vodorod-akkumuliruyushchih materialov / B.P. Tarasov. – Chernogolovka, 2024. – 125 s. (In Russian).

7. Vozmozhnosti metallurgii splavov v ao «giredmet»: ot metallogidridov do konstrukcionnyh specsplavov dlya vodorodnyh energotekhnologij / V.V. Sanin et al // Sbornik trudov. Nauchnaya konferenciya s mezhdunarodnym uchastiem «Vodorodnye energotekhnologii s ispol'zovaniem metallogidridov, Chernogolovka, 2024. – 17-20 s. (In Russian).

8. Volodin A.A. Intermetallidy dlya hraneniya vodoroda i elektrohimicheskih istochnikov energii / A.A. Volodin // Sbornik trudov. Nauchnaya konferenciya s mezhdunarodnym uchastiem «Vodorodnye energotekhnologii s ispol'zovaniem metallogidridov, Chernogolovka, 2024. – 45-50 s. (In Russian).

9. Korrelyaciya mezhdu harakteristikami processov gazofaznogo i elektrohimicheskogo gidrirovaniya intermetallicheskih soedinenij / А.А. Volodin et al // Zhurnal fizicheskoj himii. – 2020. – tom 94, № 5. – S. 796-802. https://doi.org/10.31857/S0044453720050258. (In Russian).

10. Shmalij S.V. Izuchenie struktury i elementnogo sostava intermetallidov La(Ni,Al)5, poluchennyh metodom elektrodugovoj plavki / S.V. Shmalij, A.N. Lapshin, A.A. Volodin // Sbornik trudov, Chernogolovka. – 2024. – 103-206 s. (In Russian).

11. Hydrogen cycling induced degradation in LaNi5 -type materials / J.-M. Joubert et al // Journal of Alloys and Compounds. – 2002. – Р. 330-332, 208-214. https://doi.org/10.1016/S0925-8388(01)01640-1. (In English).

12. Bocharnikov M.S. Metallogidridnyj termosorbcionnyj kompressor vodoroda vysokogo davleniya / M.S. Bocharnikov, Yu.B. Yanenko, B.P. Tarasov // International Scientific Journal for Alternative

13. Energy and Ecology, Chernogolovka. – 2012. – № 12(116). – 18-23 s. (In Russian).

14. Kisi E.H. The hydrogen activation of LaNi5 / E.H. Kisi, C.E. Buckley, E.M. Gray // Journal of Alloys and Compounds. – 1992. – № 185(2). – Р. 369-384. https://doi.org/10.1016/0925-8388(92)90484-q. (In Russian).

15. Solovej V.V. Analiz termodinamicheskih harakteristik metallogidridnyh sistem dlya hraneniya vodoroda s ispol'zovaniem modificirovannoj skhemy teorii vozmushchenij / V.V. Solovej, A.N. Avramenko, K.R. Umerenkova // Journal of Mechanical Engineering. – 2019. – Vol. 22, № 3. ISSN 0131-2928. (In Russian).

16. Physical properties and electronic structure of LaNi5 compound before and after hydrogenation: An experimental and theoretical approach / Mojtaba S. Alavi Sadr (Zareii) et al // Iranian Journal of Hydrogen & Fuel Cell. – 2014. – № 1 – Р. 27-39. (In English).

17. Nadol'skij D.S. Vodorodakkumuliruyushchie materialy / D.S. Nadol'skij, L.R. Zinnatullina, N.A. Medvedeva // Vestnik Permskogo universiteta. Seriya «Himiya». – 2019. – T. 9, vyp. 2. – S. 106-125. https://doi.org/10.17072/22231838-2019-2-106-125. (In Russian).

18. Electrochemical properties of the LaNi3.55Mn0.4 Al 0.3 Co 0.4Fe0.35 hydrogen storage alloy / M. Tliha et al // Journal of Power Sources. – 2006. – № 160. – Р. 1391-1394. https://doi.org/10.1016/j.jpowsour.2006.03.026. (In English).

19. Hydrogen storage in mechanically milled Mg–LaNi5 and MgH2–LaNi5 composites / G. Liang et al // Journal of Alloys and Compounds. – 2000. – № 297. – Р. 261-265. PII: S0925-8388(99)00592-7. (In English).

20. Vzaimodeĭstvie s vodorodom splavov Mg-rzm-Ni i kompozitov na ih osnove / D.N. Borisov et al // Proceedings of IX International Conference «Hydrogen Material Science and Chemistry of Metal Hydrides», Ukraine, 2005. – S. 128-129. (In Russian).

21. Magnetic properties of LaNi5-based compounds / L.T. Tai et al // Journal of Magnetism and Magnetic Materials. – 2003. – № 262. – Р. 485-489. https://doi.org/10.1016/S0304-8853(03)00082-9. (In English).

22. Microelectrochemistry study of metal-hydride battery materials Cycling behavior of LaNi3.55 Mn0.4 Al 0.3 Co0.75 compared with LaNi5 and its mono-substituted derivatives / А. Merzouki et al // Journal of Power Sources. – 2002. – № 109. – Р. 281-286. PII:S0378-7753(02)00074-5. (In English).

23. Ji L. Influence of annealing time on electrochemical hydrogen storage properties of La0.5Nd0.05Sm0.3Mg0.15Ni3.5 alloys / L. Ji, X. Zhao, D. Ke // Journal Springer Nature. – 2018. https://doi.org/10.1007/s42452-018-0017-8. (In English).

24. Experimental study of the influences substitution from Ni by Co, Al and Mn on the hydrogen storage properties of LaNi3.6Mn0.3Al0.4Co0.7 alloy / С. Briki et al // Іnternational journal of hydrogen energy. – 2017. – Р. 1-8. https://doi.org/10.1016/J.IJHYDENE.2017.02.065. (In English).

25. Vliyanie mishmetalla na svojstva gidridov na osnove LaNi5 / N.V. Rtishcheva et al // Himicheskij fakul'tet, Moskovskij gosudarstvennyj universitet im. (In Russian).

26. Chang J.K. Effect of Ni content on the electrochemical characteristics of the LaNi5-based hydrogen storage alloys / J.K. Chang, D.N.S. Shong, W.T. Tsai // Materials Chemistry and Physics. – 2004. – Р.361-366. https://doi.org/10.1016/J.MATCHEMPHYS.2003.10.011. (In English).

27. Filatova E.A. Kalorimetricheskoe issledovanie vzaimodejstviya intermetallicheskogo soedineniya LаNi4,5 Mn0,3 Al0,2 s vodorodom / E.A. Filatova, N.A. Yakovleva, K.N. Semenenko // Vestn. mosk. unta. ser. 2. himiya. – 2000. – T. 41, № 5. – Р. 331-334s. (In Russian).

28. Klyamkin S.N. Neravnovesnye sostoyaniya i gisterezis sorbcii-desorbcii vodoroda v vodorodakkumuliruyushchih materialah / S.N. Klyamkin. – Moskva. – 2014. (In Russian).

29. Effect of Co content on the structural and electrochemical properties of the La0.7 Mg 0.3 Ni3.4-x Mn 0.1 Co x hydride alloys / Y. Liu et al // Journal of Alloys and Compounds. – 2004. – № 376. – Р. 296-303. https://doi.org/10.1016/j.jallcom.2004.01.007. (In English).

30. Hydrogen absorption properties of a mechanically milled Mg–50 wt.% LaNi composite / G. Liang et al // Journal of Alloys and Compounds. – 1998. – № 268. – Р. 302–307. https://doi.org/10.1016/S0925-8388(97)00607-5. (In English).

31. Hydrogen Storage Properties of Nanocrystalline Mg2Ni Based Alloys Prepared by Ball-Milling / Y. Xiong et al // Plasma Fusion Res. SERIES. – 2017. – Vol. 10. – Р. 94-97. https://doi.org/10.12677/MS.2017.72031. (In English).

32. Effect of rare earth elements on electrochemical properties of La–Mg–Ni-based hydrogen storage alloys / L. Yuan et al // International Journal of Hydrogen Energy. – 2009. – № 34. – Р. 1399-1404. https://doi.org/10.1016/J.IJHYDENE.2008.11.049. (In English).

33. Yang F. La2MgNi7.5 Co1.5 Hydrogen Storage Alloy Prepared by the Magnetic Field Assisted Sintering / F. Yang, H. Li, J. Liu // MATEC Web of Conferences. – 2018. – № 227. – Р. 01006. https://doi.org/10.1051/matecconf/201822701006. (In English).

34. Klyamkin S.N. Metallgidridnye kompozicii na osnove magniya kak materialy dlya akkumulirovaniya vodoroda / S.N. Klyamkin // Ros.him.zh. (Zh.Ros.him.zh. ob-vo im. D.I. Mendeleeva). – 2006. – m. L, № 6. (In Russian).

35. Pandey S.K. Improvement in hydrogen storage capacity in LaNi5 through substitution of Ni by Fe / S.K. Pandey, A. Srivastava, O.N. Srivastava // International Journal of Hydrogen Energy. – 2007. – № 32. – Р. 2461-2465. https://doi.org/10.1016/J.IJHYDENE.2006.12.003. (In English).

36. X-ray diffraction peak broadening and lattice strain in LaNi5-based alloys / Y. Nakamura et al // Journal of Alloys and Compounds. – 2000. – № 298. – Р. 138-145. https://doi.org/10.1016/S0925-8388(99)00596-4. (In English).

37. Percheron-Guégan A. Correlations Between the Structural Properties, the Stability and the Hydrogen Content of Substituted LaNi5 Compounds / A. Percheron-Guégan, C. Lartigue, J.C. Achard // J. Less-Common Met. – 1985. – № 109. – Р. 287-309. (In English).

38. Investigation of changes in crystal and electronic structures by hydrogen within LaNi5 es / A.F. Al Alam et al. – 2009. – № 11. – Р. 1098. (In English).

39. Microstructure of LaNi5 Base Nanopowders Produced by High Energy Ball Milling / J. Kusiński et al // Solid State Phenomena. – 2012. – № 186. – Р. 124-129. https://doi.org/10.4028/www.scientific. net/SSP.186.124. (In English).

40. Sakintuna B.А. Metal hydridematerials for solid hydrogen storage: A review / B.А. Sakintuna, Fb Lamari-Darkrim, Mc. Hirscher // International Journal of Hydrogen Energy. – 2007. – № 32. – Р. 1121-1140. https://doi.org/10.1016/j.ijhydene.2006.11.022. (In English).

41. Hydrogen absorption and desorption characteristics in the La0.5Ni1.5Mg17 prepared by hydriding combustion synthesis / Q. Li et al // Int J Hydrogen Energy. – 2006. – № 31(4). – Р. 497-503. (In English).

42. Mechanical alloying and hydrogen absorption properties of the Mg–Ni system / G. Liang et al // J Alloys Compds. – 1998. – № 267. – Р. 302-6. (In English).

43. Smirnov V.L. Iskrovoe plazmennoe spekanie poroshkovyh materialov sistemy Fe-N / V.L. Smirnov, A.S. Yurovskih // XVII Mezhdunarodnaya nauchno-tekhnicheskaya Ural'skaya shkolaseminar metallovedov-molodyh uchenyh. – 2016. (In Russian).

44. LaMgNi hydrogen storage alloy prepared by spark plasma sintering / X.-P. Dong et al // Transactions of Materials and Heat Treatment. – 2014. (In English).

45. Effect of Spark Plasma Sintering Temperature on Electrochemical Properties of La0.82 Mg0.18 Ni3.50 Co0.15 Alloy / X.P. Dong et al // Journal of Iron and Steel Research International – 2016. – № 23(5). – Р. 459-465. https://doi.org/10.1016/S1006-706X(16)30073-5. (In English).

46. Aleksin E.N. Hranenie vodoroda v gidride intermetallicheskogo soedineniya LaNi5 / E.N. Aleksin, A.A. Fokin // Morskoj Vestnik. – 2010. – № 3(35). – Р.45-47. (In Russian).

47. Structure and hydrogenation features of mechanically activated LaNi5-type alloys / Р. Konik et al // International Journal of Hydrogen Energy. – 2021. – Т. 46, № 25. – Р. 13638-13646. https://doi.org/10.1016/j.ijhydene.2020.07.163. (In English).

48. Liang G. Hydrogen storage properties of the mechanically alloyed LaNi5-based materials / G. Liang, J. Huot, R. Schulz // Journal of Alloys and Compounds. – 2001. – № 320. – Р. 133-139. https://doi.org/10.1016/s0925-8388(01)00929-x. (In English).

49. Sleiman S. Investigation of the First Hydrogenation of LaNi5 / S. Sleiman, S. Shahgaldi, J. Huot // Reactions. – 2024. – Vol. 5, Iss. 3. – P. 419-428. https://doi.org/10.3390/reactions5030021. (In English).

50. Aoyagi H. Effect of ball milling on hydrogen absorption properties of FeTi, Mg2Ni and LaNi5 / H. Aoyagi, K. Aoki, T. Masumoto // J Alloys Compds. – 1995. – № 231. – Р. 804-9. (In English).

51. Experimental and theoretical analysis of hydrogen absorption in LaNi5–H2 reactors / А. Demircan et al // Int J Hydrogen Energy. – 2005. – № 30. – Р. 1437-46. (In English).


Review

For citations:


Skakov M., Mukhamedova N., Nassyrova A. THE INFLUENCE OF MECHANICAL ACTIVATION ON THE STRUCTURAL-PHASE STATES AND HYDROGEN ABSORPTION PROPERTIES OF THE INTERMETALLIC COMPOUND LANI – REVIEW. Bulletin of Shakarim University. Technical Sciences. 2025;1(4(20)):538-551. https://doi.org/10.53360/2788-7995-2025-4(20)-64

Views: 7

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X