Preview

Bulletin of Shakarim University. Technical Sciences

Advanced search

COMPARATIVE ANALYSIS OF MACHINE LEARNING METHODS FOR PREDICTING CORONARY HEART DISEASE: EVIDENCE FROM THE UCI HEART DISEASE DATASET

https://doi.org/10.53360/2788-7995-2025-4(20)-6

Abstract

Coronary artery disease remains one of the leading causes of death and disability worldwide. Timely diagnosis can reduce the incidence of complications and ease the burden on healthcare systems. However, traditional methods are often costly, invasive, and limited in accessibility. Recent studies confirm the potential of machine learning for clinical applications. This raises the question: is it possible to reliably predict the presence of disease using only clinical and demographic data, without imaging methods?
The aim of this study was to evaluate the accuracy and practical value of such models. Using the UCI Heart Disease dataset (n = 920) under a unified protocol, the LightGBM algorithm was trained and achieved the following results: accuracy = 0.8696, precision = 0.8679, recall = 0.9020, F1-score = 0.8846. These findings complement previous research based on imaging approaches.
The study compared multiple algorithms under identical preprocessing and validation conditions, assessed probability calibration, and applied SHAP for interpretability. The analysis revealed that the main predictors (e.g., ST-segment depression) aligned with established clinical knowledge. This confirms that the model can be used for initial screening and referral to additional diagnostics. Overall, calibrated and interpretable algorithms based on open clinical data can serve as a valuable tool for patient routing in resourcelimited settings.

About the Authors

Zh. Y. Baigarayeva
Al-Farabi Kazakh National University; LLP «Kazakhstan R&D Solutions»
Kazakhstan

Zhanel Yermashkyzy Baigarayeva – Master’s degree holder

050040, Kazakhstan, Almaty, Al-Farabi Avenue 71

050056, Kazakhstan, Almaty, 3 Kozheduba str 



A. K. Boltaboyeva
Al-Farabi Kazakh National University; LLP «Kazakhstan R&D Solutions»
Kazakhstan

Assiya Kublandi kyzi Boltaboyeva – Master’s degree holder, 3rd-year PhD student

050040, Kazakhstan, Almaty, Al-Farabi Avenue 71

050056, Kazakhstan, Almaty, 3 Kozheduba str 



B. T. Imanbek
Al-Farabi Kazakh National University
Kazakhstan

Baglan Talgatkyzy Imanbek – PhD, Associate Professor, Research Professor

050040, Kazakhstan, Almaty, Al-Farabi Avenue 71



M. I. Kozhamberdiyeva
Al-Farabi Kazakh National University; LLP «Kazakhstan R&D Solutions»
Kazakhstan

Mergul Imanbekovna Kozhamberdiyeva – Candidate of Pedagogical Sciences

050040, Kazakhstan, Almaty, Al-Farabi Avenue 71

050056, Kazakhstan, Almaty, 3 Kozheduba str 



Zh. K. Zholdybayeva
Abai Kazakh National Pedagogical University
Kazakhstan

Zhanel Kairatkyzy Zholdybayeva – 4th year Bachelor's student

050010, Kazakhstan, Almaty, Dostyk Avenue 13 



References

1. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors / Р. Joseph et al // Circulation research. – 2017. – № 121(6). – Р. 677-694. https://doi.org/10.1161/CIRCRESAHA.117.308903.

2. Clinical, Economical, and Organizational Impact of Chronic Ischemic Cardiovascular Disease in Italy: Evaluation of 2019 Nationwide Hospital Admissions Data / F. Pietrantonio et al // Int. J. Environ. Res. Public Health. – 2025. – № 22. – Р. 530. https://doi.org/10.3390/ijerph22040530.

3. Prevalence and trends of coronary artery disease risk factors and their effect on age of diagnosis in patients with established coronary artery disease: Tehran Heart Center (2005–2015) / K. Hosseini et al // BMC Cardiovasc Disord 21. – 2021. – № 477(2021). https://doi.org/10.1186/s12872-021-02293-y.

4. Economic Analysis of the CADScor System for Ruling Out Coronary Artery Disease in England / М. Javanbakht еt al // PharmacoEconomics. – 2022. – Open 6. – Р. 123-135. https://doi.org/10.1007/s41669-021-00297-0.

5. Roth G. The Global Burden of Cardiovascular Diseases and Risks: A Compass for Global Action / G. Roth, G. Mensah, V. Fuster // JACC. – 2020. – № 76(25). – Р. 2980-2981. https://doi.org/10.1016/j.jacc.2020.11.021.

6. Estimation of the Burden of Ischemic Heart Disease in the Tabasco Population, Mexico, 2013–2021 / J.J. Cárdenas-Anguiano et al // Int. J. Environ. Res. Public Health. – 2025. – № 22. – Р. 423. https://doi.org/10.3390/ijerph22030423.

7. Fadah K. Epidemiology, Pathophysiology, and Management of Coronary Artery Disease in the Elderly / K. Fadah, A. Hechanova, D. Mukherjee // The International journal of angiology: official publication of the International College of Angiology. – 2022. – № 31(4). – Р. 244-250. https://doi.org/10.1055/s-0042-1751234.

8. National prevalence of coronary heart disease and its relationship with human development index: A systematic review / Ke-Fu Zhu et al // European Journal of Preventive Cardiology. – 2016. – Vol. 23, Issue 5. – Р. 530-543. https://doi.org/10.1177/2047487315587402.

9. Prevalence of coronary artery disease and its risk factors in Kerala, South India: a communitybased cross-sectional study / M.N. Krishnan et al // BMC Cardiovasc Disord. – 2016. – № 16. – Р. 12. https://doi.org/10.1186/s12872-016-0189-3.

10. Risk Factor Burden and Long-Term Prognosis of Patients With Premature Coronary Artery Disease / М. Zeitouni et al // Journal of the American Heart Association. – 2020. – № 9(24). – Р. e017712. https://doi.org/10.1161/JAHA.120.017712.

11. Stratification of Patients with Coronary Artery Disease by Circulating Cytokines Profile: A Pilot Study / С. Iside et al // M. J. Clin. Med. – 2023. – № 12. – Р. 6649. https://doi.org/10.3390/jcm12206649.

12. Myocardial Ischemia: Differentiating between Epicardial Coronary Artery Atherosclerosis, Microvascular Dysfunction and Vasospasm in the Catheterization Laboratory / G. Monizzi et al // J. Clin. Med. – 2024. – № 13. – Р. 4172. https://doi.org/10.3390/jcm13144172.

13. Genetics of coronary artery disease and myocardial infarction / X. Dai et al // World journal of cardiology. – 2016. – № 8(1). – Р. 1-23. https://doi.org/10.4330/wjc.v8.i1.1.

14. Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries / R. Alizadehsani et al // Computer methods and programs in biomedicine. – 2018. – № 162. – Р. 119-127. https://doi.org/10.1016/j.cmpb.2018.05.009.

15. Symptom Presentation among Women with Suspected Ischemia and No Obstructive Coronary Artery Disease (INOCA) / Y.K. Taha et al // J. Clin. Med. – 2023. – № 12. – Р. 5836. https://doi.org/10.3390/jcm12185836.

16. Comparison of Outcomes in Patients With Acute Coronary Syndrome Presenting With Typical Versus Atypical Symptoms / Y. Hammer et al // The American journal of cardiology. – 2019. – № 124(12). – Р. 1851-1856. https://doi.org/10.1016/j.amjcard.2019.09.007.

17. Silent Myocardial Ischemia: From Pathophysiology to Diagnosis and Treatment / Р. Theofilis et al // Biomedicines. – 2024. – № 12. – Р. 259. https://doi.org/10.3390/biomedicines12020259.

18. Nelson AJ. Current approach to the diagnosis of atherosclerotic coronary artery disease: more questions than answers / AJ Nelson, M Ardissino, PJ. Psaltis // Therapeutic Advances in Chronic Disease. – 2019. – №10. https://doi.org/10.1177/2040622319884819.

19. Diagnostic accuracy of non-invasive cardiac imaging modalities in patients with a history of coronary artery disease: a meta-analysis / RA Jukema et al // Heart. – 2025. – № 111. – Р. 4-10. https://doi.org/10.1136/heartjnl-2024-324248.

20. Speckle Tracking Echocardiography: Early Predictor of Diagnosis and Prognosis in Coronary Artery Disease / М.С. Pastore et al // BioMed research international. – 2021. https://doi.org/10.1155/2021/6685378.

21. Challenges and Burdens in the Coronary Artery Disease Care Pathway for Patients Undergoing Percutaneous Coronary Intervention: A Contemporary Narrative Review / М. Kodeboina et al // Int. J. Environ. Res. – 2023. – № 20. – Р. 5633. https://doi.org/10.3390/ijerph20095633.

22. Wang L.W. Non-invasive screening for coronary artery disease: current perspectives, patient, public health and ethical considerations in evaluating symptomatic and asymptomatic individuals / L.W. Wang // Internal medicine journal. – 2025. – № 55(4). – Р. 555-563. https://doi.org/10.1111/imj.16585.

23. Advancements in Biomarkers for Early Detection and Risk Stratification of Cardiovascular Diseases-A Literature Review / А. Nazir et al // Health science reports. – 2025. – № 8(5). – Р. e70878. https://doi.org/10.1002/hsr2.70878.

24. Zachariadis C.B. Harnessing Artificial Intelligence for Automated Diagnosis / C.B. Zachariadis, H.C. Leligou // Information. – 2024. – № 15. – Р. 311. https://doi.org/10.3390/info15060311.

25. A new machine learning technique for an accurate diagnosis of coronary artery disease / М. Abdar et al // Computer methods and programs in biomedicine. – 2019. – № 179. – Р. 104992. https://doi.org/10.1016/j.cmpb.2019.104992.

26. Multi-constraints based deep learning model for automated segmentation and diagnosis of coronary artery disease in X-ray angiographic images / М. Algarni et al // PeerJ Computer Science. – 2022. – № 8. – Р. e993. https://doi.org/10.7717/peerj-cs.993.

27. Machine Learning Quantitation of Cardiovascular and Cerebrovascular Disease: A Systematic Review of Clinical Applications / С. Boyd et al // Diagnostics. – 2021. – № 11. – Р. 551. https://doi.org/10.3390/diagnostics11030551.

28. Akella A. Machine Learning Algorithms for Predicting Coronary Artery Disease: Efforts Toward an Open Source Solution / A. Akella, S. Akella // Future Science OA. – 2021. – № 7(6). https://doi.org/10.2144/fsoa-2020-0206.

29. A 3D deep learning classifier and its explainability when assessing coronary artery disease / Cheung, Wing Keung et al/ – 2023. 10.48550/arXiv.2308.00009.

30. Integration of artificial intelligence into clinical patient management: focus on cardiac imaging / F. Loncaric et al // Revista Española de Cardiología (English Edition). – 2021. – Vol. 74, Issue 1. – Р. 72-80. https://doi.org/10.1016/j.rec.2020.07.003.

31. Non-invasive Assessment of Coronary Artery Disease: The Role of AI in the Current Status and Future Directions / F. Ezekwueme et al // Cureus. – 2025. – № 17(2). – Р. e78994. https://doi.org/10.7759/cureus.78994.

32. Using artificial intelligence in the development of diagnostic models of coronary artery disease with imaging markers: A scoping review / X. Wang et al // Front. Cardiovasc. – 2022. – Med. 9:945451. https://doi.org/10.3389/fcvm.2022.945451.

33. Machine learning and deep learning-based approach in smart healthcare: Recent advances, applications, challenges and opportunities / Anichur Rahman et al // [J]. AIMS Public Health. – 2024. – № 11(1). – Р. 58-109. https://doi.org/10.3934/publichealth.2024004.

34. Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases / А. Ogunpola et al // Diagnostics. – 2024. – № 14. – Р. 144. https://doi.org/10.3390/diagnostics14020144.

35. Implementing Machine Learning in Interventional Cardiology: The Benefits Are Worth the Trouble / Ben Ali W. Et al // Front. Cardiovasc. Med. – 2021. – № 8. – Р. 711401. https://doi.org/10.3389/fcvm.2021.711401.

36. Wong K. Deep learning-based cardiovascular image diagnosis: A promising challenge / K. Wong, G. Fortino, D. Abbott // Future Generation Computer Systems. – 2019. – № 110. – Р. 10. 1016/j.future.2019.09.047.

37. Advances in Diagnosis, Therapy, and Prognosis of Coronary Artery Disease Powered by Deep Learning Algorithms / M. Chu еt al // JACC: Asia. – 2023. – № 3(1). – Р. 1-14. https://doi.org/10.1016/j.jacasi.2022.12.005.

38. The Role of Artificial Intelligence in Improving Patient Outcomes and Future of Healthcare Delivery in Cardiology: A Narrative Review of the Literature / D. Gala et al // Healthcare. – 2024. – № 12. – Р. 481. https://doi.org/10.3390/healthcare12040481.

39. Classification models for assessing coronary artery disease instances using clinical and biometric data: an explainable man-in-the-loop approach / AD. Samaras et al // Sci Rep. – 2023. – № 13. – Р. 6668. https://doi.org/10.1038/s41598-023-33500-9.

40. Heart Disease [Dataset] / А. Janosi et al // UCI Machine Learning Repository. – 1989. https://doi.org/10.24432/C52P4X.

41. Hancock J.T. Survey on categorical data for neural networks / J.T. Hancock, T.M. Khoshgoftaar // J Big Data 7, 28 (2020). https://doi.org/10.1186/s40537-020-00305-w.

42. The choice of scaling technique matters for classification performance / B.V. Lucas de Amorim et al // Applied Soft Computing. – 2023. – Vol. 133. – Р. 109924, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2022.109924.

43. Conditional mutual information-based feature selection algorithm for maximal relevance minimal redundancy / Х. Gu et al // Appl Intell. – 2022. – № 52. – Р. 1436-1447. https://doi.org/10.1007/s10489-021-02412-4.

44. Evaluation of clinical prediction models (part 1): from development to external validation / GS. Collins et al // BMJ. – 2024. – № 8. – Р. 384. e074819. https://doi.org/10.1136/bmj-2023-074819. PMID: 38191193; PMCID: PMC10772854.

45. Demircioğlu A. Applying oversampling before cross-validation will lead to high bias in radiomics / A. Demircioğlu // Sci Rep. – 2024. – № 14. – Р. 11563. https://doi.org/10.1038/s41598-024-62585-z.

46. On evaluation metrics for medical applications of artificial intelligence / S.A. Hicks et al // Sci Rep. – 2022. – № 12. – Р. 5979. https://doi.org/10.1038/s41598-022-09954-8.

47. Explainable coronary artery disease prediction model based on AutoGluon from AutoML framework / J. Wang et al // Front. Cardiovasc. Med. – 2024. – № 11. – Р. 1360548. https://doi.org/10.3389/fcvm.2024.1360548.

48. Evaluation of clinical prediction models (part 1): from development to external validation / G.S. Collins et al // BMJ. – 2024. – № 384. – Р. e074819. https://doi.org/10.1136/bmj-2023-074819.

49. Predicting COVID-19 mortality with electronic medical records / Н. Estiri et al // npj Digit. Med. – 2021. – № 4. – Р. 15. https://doi.org/10.1038/s41746-021-00383-x.


Review

For citations:


Baigarayeva Zh.Y., Boltaboyeva A.K., Imanbek B.T., Kozhamberdiyeva M.I., Zholdybayeva Zh.K. COMPARATIVE ANALYSIS OF MACHINE LEARNING METHODS FOR PREDICTING CORONARY HEART DISEASE: EVIDENCE FROM THE UCI HEART DISEASE DATASET. Bulletin of Shakarim University. Technical Sciences. 2025;1(4(20)):45-53. (In Kazakh) https://doi.org/10.53360/2788-7995-2025-4(20)-6

Views: 12

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2788-7995 (Print)
ISSN 3006-0524 (Online)
X