
 
ISSN 2788-7995 (Print) 
ISSN 3006-0524 (Online) 

Вестник Университета Шакарима. Технические науки № 4(20) 2025 

Bulletin of Shakarim University. Technical Sciences № 4(20) 2025 

89 

 

https://doi.org/10.53360/2788-7995-2025-4(20)-11 
 
IRTSTI: 28.23.15 

 
M.K. Ryspayeva1,2*, S.O. Salykova1 

1Akhmet Baitursynuly Kostanay Regional University, 
Baytursynov Street 47, 110000, Kostanay, Kazakhstan 

2Astana IT University,  
Mangilik El, block C.1, 010000, Astana, Kazakhstan, 

*e-mail: marya.rys1@mail.ru  
 

EVALUATION OF STYLEGAN2 AND STYLEGAN3 FOR SYNTHETIC MEDICAL IMAGE 
GENERATION ON BUSI AND CBIS-DDSM DATASETS 

 
Abstract: Deep learning from medical images is typically hindered by limited access to images and 

severe imbalance of classes that reduces the effectiveness of typical machine learning algorithms. Generative 
adversarial networks can be employed to address such issues by creating natural-appearing synthetic images 
to complement training sets. In this study, we compare two advanced GAN architectures, StyleGAN2 and 
StyleGAN3, using two publicly available breast imaging datasets: BUSI (ultrasound, 210 malignant cases) and 
CBIS-DDSM (mammography, 509 malignant cases). Evaluation was based on Fréchet Inception Distance and 
Kernel Inception Distance. On BUSI, StyleGAN3 achieved FID = 140.7 and KID = 0.06 at 1000 epochs, 
whereas StyleGAN2 achieved FID = 259.7 and KID = 0.25. On CBIS-DDSM, StyleGAN3 achieved FID = 90.6 
and KID = 0.06, and StyleGAN2 achieved FID = 124.8 and KID = 0.10. These results demonstrate that 
StyleGAN3 has a tendency to synthesize images that are more natural and diversified under limited dataset 
conditions, at the cost of increased training times, whereas StyleGAN2 provides similar quality at less 
expensive computational costs. The results indicate the potential of generating medical images and the trade-
off between image quality and efficiency in data augmentation for breast cancer image improvement. 

Key words: Generative Adversarial Networks; StyleGAN2; StyleGAN3; FID; KID; Breast Ultrasound; 
Mammography. 

 

Introduction 
Generative adversarial networks (GANs) currently represent the prominent research focus of 

ongoing information technology research, bringing forth techniques for generating data, enriching it, 
and running simulations of it in application domains wherein the data scarcity is a fundamental 
challenge. Their ability to generate realistic, high-dimensional samples makes them particularly 
attractive for small-sample environments, where traditional machine learning methods suffer from 
overfitting and poor generalization [1].   

One of the application domains wherein overfitting is especially ruthless is medical imaging, 
where datasets are typically small, imbalanced, and costly to annotate. From the perspective of IT 
research, medical data constitute the desirable test case to investigate generative models under 
limited resources and limited data. Traditional GAN realizations, such as Wasserstein GANs (WGAN, 
WGAN-GP) [2, 3], have demonstrated the potential of image generation by synthesis but typically 
produce samples of restricted realism and unstable trainability. Latest models, such as those of the 
StyleGAN family, feature advanced architecture innovations that significantly upgrade realism and 
stability [4]. StyleGAN2 replaced the AdaIN operator of StyleGAN by weight demodulation, appended 
path-length regularization, and optimized generator/discriminator blocks, and all of them together 
established novel quality baselines for synthetic images. Nevertheless, StyleGAN2 remained prone 
to aliasing artifacts that may affect geometric consistency for longer-term training [5]. StyleGAN3 
resolved the issue by adopting alias-free continuous phase transform-based architecture to boost 
stability and ensure better preservation of structural details [6]. 

In the above prior work of the first author (Ryspayeva & Salykova, 2025), dataset balancing 
was studied through a proprietary version of GAN (DGAN-WP-TL), and StyleGAN2 was tested over 
three medical sets. That work, though, was limited to 500 epochs, and StyleGAN3 was omitted. The 
present paper expands upon that comparison by systematically comparing StyleGAN2 and 
StyleGAN3, training the two models to 1000 epochs, and comparing their output on two medical 
image test sets: BUSI (ultrasound) and CBIS-DDSM (mammography) [7]. In our experiments, we 
focus on synthesizing malignant cases, which represent the minority class in both BUSI and CBIS-
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DDSM datasets. The motivation is to mitigate class imbalance by generating realistic samples for 
the underrepresented malignant category. The research aim is therefore systematic and 
computational: 

– To evaluate StyleGAN2 and StyleGAN3 under conditions of extreme data scarcity, with 
medical images as a standard case scenario. 

– To investigate their quality (FID, KID, SWD) and efficiency (training time), and therefore 
highlight architecture trade-offs that hold for limited-sample IT applications.  

In this in-depth analysis, we aim to achieve novel insights into the merits and limitations of 
StyleGAN-based architectures in medical images and shed light upon their promise of making up for 
dataset scarcity and breast cancer data skewness. 

Methodology 
This study was executed from two publicly accessible breast imaging datasets: the Breast 

Ultrasound Images Dataset (BUSI) and the Curated Breast Imaging Subset of DDSM (CBIS-DDSM). 
The breast ultrasound image dataset comprises 210 grayscale images of malignant cases. The 
images were all reduced to 512×512 pixels and normalized to the [0,1] interval [8]. The CBIS-DDSM 
dataset contains 509 mammograms that are labeled as malignant. The images were reduced to 
256×256 pixels and normalized [9]. For this study, only the malignant subsets of BUSI (210 images) 
and CBIS-DDSM (509 images) were used. The generative task was specifically targeted at 
producing synthetic malignant samples, reflecting the minority class in both datasets. 

Two of the most recent GAN architectures were taken into account in this study: StyleGAN2 
and StyleGAN3. StyleGAN2 incorporates adaptive instance normalization, residual connections, and 
path length regularization that, together, enable synthesizing images that are plausible to human 
eyes. However, the architecture is known to be vulnerable to the aliasing artifacts that may be seen 
under extended training [5]. StyleGAN3 addresses the above under the alias-free design that is 
founded upon continuous phase-based transformations and filtered activations [6]. The above 
innovation introduces geometric stability and reduces inconsistencies, making it particularly suitable 
for medical images for which fine details matter. It is not restricted to medical imaging and can be 
generalized to additional domains for synthetic data generation to support machine learning under 
data-scarce conditions. 

The training conditions were for the continuation of our previous research (Ryspayeva & 
Salykova, 2025). In the case of the BUSI and CBIS-DDSM tests, the batch size was 2. That decision 
was not only dictated by computational needs, however, but by the experience that such a setup 
provides for stronger convergence for those specific sets of information. The models were all trained 
for 1000 epochs, doubling the training period of the corresponding previous research, to interrogate 
the eventual StyleGAN architecture convergence behavior. The training was conducted using the 
Adam optimizer with β1 = 0.0 and β2 = 0.99 as hyperparameters, and the learning rate was 
maintained at a constant value of 0.002. Optimizing was done for the non-saturating GAN loss under 
R1 regularization. Adaptive augmentation was employed to achieve higher generalization in cases 
where data availability was limited. All of the experiments were run from a single GPU, with memory 
usage limited to approximately 10 GB [7]. 

Three standard metrics quantified performance.  
– Fréchet Inception Distance (FID): measures similarity of distributions between real-world 

and artificial images in the Inception feature space [10]. 
– Kernel Inception Distance (KID): calculates an unbiased similarity estimate by utilizing a 

polynomial kernel, incredibly robust despite limited sample sizes [11]. 
– Sliced Wasserstein Distance (SWD): measures multi-scale distributional correspondence, 

structure-sensitive [12]. 
For visualization purposes, we employed Principal Component Analysis (PCA) to project 

higher-dimensional image representations into two-dimensional space in such a way that real and 
synthetic data distributions can be comparatively analyzed. We perform PCA over (224×224) size 
flattened grayscale images to visualize real and synthetic sample distribution alignment. The 
principal components of the PCA are calibrated only over the real dataset and subsequently applied 
to synthetic samples [13]. 

By integrating quality and efficiency analysis, it is possible to enable the holistic analysis of 
StyleGAN architectures for small sample sizes. It is not limited to medical imaging since it can be 
extended to synthetic data generation for machine learning support under data-scarce cases for 
different domains. 
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Experiments and Results 
Two breast image datasets, CBIS-DDSM and BUSI, were tested with StyleGAN2 and 

StyleGAN3. The quantitative quality of images was examined by applying the FID and KID. Both 
distances were calculated for various epochs of training to track the change in the performance of 
the models as they converged. 

Table 1 demonstrates FID and KID scores calculated for the BUSI dataset. StyleGAN3 was 
better than StyleGAN2 at every epoch. At 100 epochs, StyleGAN3 had already achieved significantly 
lower FID (281.17 vs. 565.37) and KID (0.27 vs. 0.78), indicating stabler convergence. After longer 
training, the gap continued to grow wider: at 1000 epochs, StyleGAN3 had achieved KID = 0.06 and 
FID = 140.67, while StyleGAN2 achieved KID = 0.25 and FID = 259.65 

 
Table 1 – FID, KID and SWD values for BUSI dataset 

Epoch 
StyleGAN2 StyleGAN3 

KID ↓ FID↓ SWD↓ ` KID ↓ FID↓ SWD ↓ 

100 0.78±0.02 565.37 - 0.27±0.02 281.17 - 

500 0.42±0.01 383.48 - 0.08±0.01 149.27 - 

1000 0.25±0.01 259.65 5.62 0.06±0.01 140.67 3.21 

 

The CBIS-DDSM dataset showed comparable trends, as shown in Table 2. StyleGAN2 
showed continuous improvements over training, achieving 0.10 KID and 124.79 FID at 1000 epochs. 
StyleGAN3 remarkably achieved better outcomes at every checkpoint: at 1000 epochs, it achieved 
0.06 KID and 90.58 FID, indicating ~27% FID improvement compared to StyleGAN2. 
 

Table 2 – FID and KID values for CBIS-DDSM dataset 

Epoch 
StyleGAN2 StyleGAN3 

KID ↓ FID↓ SWD↓ ` KID ↓ FID↓ SWD↓ 

100 0.56±0.01 401.20 - 0.11 129.84 - 

500 0.13±0.01 143.75 - 0.07 97.27 - 

1000 0.10±0.01 124.79 25.00 0.06 90.58 24.32 

 

Taken together, these results highlight the superiority of StyleGAN3 for medical image 
synthesis in both BUSI and CBIS-DDSM. On BUSI, StyleGAN3 reduced FID by nearly 46% and KID 
by more than 4× compared to StyleGAN2 at 1000 epochs. On CBIS-DDSM, StyleGAN3 achieved a 
27% reduction in FID and a 40% reduction in KID at the same epoch. These findings emphasize that 
the alias-free design of StyleGAN3 can better capture subtle texture patterns and structural 
consistency, which are critical in medical imaging. 

In addition to FID and KID, SWD, another proxy for quantifying synthetic-to-real distributional 
similarity, was also computed. StyleGAN3 had much lower SWD values, verifying its superior 
structure information retention capability: 3.21 vs. 5.62 on BUSI, and 24.32 vs. 25.00 on CBIS-
DDSM. 

In addition to image quality, the computational cost of model training was also of concern to 
us (Table 3). On BUSI, StyleGAN2 was trained for ~13.2 h for 1000 epochs, while StyleGAN3 nearly 
doubled the computational hours (~26.1 h). On CBIS-DDSM, StyleGAN2 was trained for ~20.5 h, 
with StyleGAN3 taking it to ~38.0 h. While costly, the massive quality gains observed with StyleGAN3 
may be justified when the realism of structure is of utmost importance. 

 
Table 3 – Training time statistics for StyleGAN2 and StyleGAN3 

Dataset Model 
Time / 

epoch, s 
sec/kimg, 

s 
100 

epochs 
500 epochs, 

hours 
1000 epochs, 

hours 

CBIS-DDSM 
StyleGAN2 74.0 145.4 ~2.05 h ~10.3 ~20.5 

StyleGAN3 136.7 268.6 ~3.8 h ~19.0 ~38.0 

BUSI 
StyleGAN2 47.5 226.2 ~1.32 h ~6.6 ~13.2 

StyleGAN3 94.0 447.6 ~2.61 h ~13.1 ~26.1 

 

In addition to the quantitative results, we also qualitatively examined the generative potential 
of StyleGAN2 and StyleGAN3 for both of the datasets, BUSI and CBIS-DDSM. As indicated by 
Figure 1, the evolutionary trend of the FID and KID values demonstrates StyleGAN3's faster 
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convergence that achieves smaller values and variability compared to StyleGAN2, in particular for 
BUSI. The numerical pattern is also evidenced by examination of distributions in Figure 2, for which 
the visualizations under PCA indicate a more comparable correspondence of the real and synthetic 
samples for StyleGAN3. The SWD corresponding values also prove the finding: StyleGAN3 achieved 
SWD of 3.21 for BUSI compared to 5.62 for StyleGAN2, and 24.32 for CBIS-DDSM compared to 
25.00 for StyleGAN2. It suggests that StyleGAN3 is capable of achieving representations that are 
closest to the manifold of real medical images. 
 

 
Figure 1 – Evolution of generative performance across training epochs for BUSI  

and CBIS-DDSM datasets:  
(a) KID curves for StyleGAN2 and StyleGAN3, (b) FID curves for StyleGAN2 and StyleGAN3 

 

 
Figure 2 – PCA visualization of real and generated images from BUSI and CBIS-DDSM datasets: 

(a) Real vs. StyleGAN2 on BUSI, (b) Real vs. StyleGAN3 on BUSI,  
(c) Real vs. StyleGAN2 on CBIS-DDSM, (d) Real vs. StyleGAN3 on CBIS-DDSM 

 
Qualitative analysis of the synthetic images also verifies these findings. In ultrasound 

synthesis of BUSI (Figure 3, (a)), StyleGAN3 possesses sharper texture and more natural-looking 
lesions with less artifact of smoothing when compared to StyleGAN2. Likewise, for CBIS-DDSM 
mammography images (Figure 3, (b)), the two models synthesize the general breast silhouette; 
however, the StyleGAN2 output images are subject to over-smoothing. In comparison, StyleGAN3 
generates more detailed morphologies of parenchymal tissue with sharper anatomical structures, 
although with noticeable subtle blurring evident. 

In short, these results show that StyleGAN3 not only improves numerical outcomes but also 
enhances the perceptual realism of simulated medical images. Such improvements are important 
particularly for medical imaging cases, for which visual plausibility has a direct impact upon 
diagnostic model learning and clinical interpretation of synthetic images. 
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Figure 3 – (a) Qualitative comparison of real and synthetic images. (a) BUSI ultrasound dataset: 
first row – real samples, second row – StyleGAN2-generated, third row – StyleGAN3-generated. 

(b) CBIS-DDSM mammography dataset: first row – real samples, second row – StyleGAN2-
generated, third row – StyleGAN3-generated 

 

Discussion 
Our experiment confirms that StyleGAN3 does make remarkable quality improvements of 

synthetic medical images over StyleGAN2, particularly for the BUSI dataset. On 100, 500, and 1000 
epochs, StyleGAN3 kept achieving reduced FID and KID values, showing that its aliasing-free 
structure is better for learning fine-grained texture structures from ultrasound images. On CBIS-
DDSM, StyleGAN2 and StyleGAN3 displayed confident convergences, and StyleGAN3 achieved 
extra reductions of FID (90.58 vs. 124.79) and KID (0.06 vs. 0.10) after epochs of 1000. These 
results verify that the advantages of StyleGAN3 over StyleGAN2 in BUSI actually extend to 
mammography, even when limited data are used. Previous works in Table 4, such as IGAN [14], 2S-
BUSGAN [15], and GSDA [16], achieved FID scores of 40-100, but often for reduced image sizes 
(256 × 256 × 256) and larger datasets (≈780 images). Our own prior work with DGAN-WP-TL [7] 
achieved an FID of 179.4 and a KID of 0.1448 on BUSI (509 images), as it was experiencing issues 
learning from smaller sets. In contrast, StyleGAN3 trained on just 210 BUSI images reached an FID 
of 140.7 and a KID of 0.06 after 1000 epochs, representing a meaningful step forward. These results 
underscore the potential of advanced architectures to mitigate data scarcity and produce high-quality 
images despite limited training samples. 

The results indicate that while StyleGAN3 does not yet surpass the very low FID values 
reported in some larger-scale studies (e.g., IGAN), it significantly improves over our previous DGAN-
WP-TL baseline and StyleGAN2 under the same data constraints (Table 4). 

 
Table 4 – Comparison of GAN-based methods for BUSI dataset synthesis 

Author & Year Method FID KID Dataset 

Alruily et al. (2023) [14] IGAN 41.86 – BUSI 

Luo et al. (2023) [15] 2S-BUSGAN 101.00 0.6238 BUSI 

Liu et al. (2023) [16] GSDA 68.78 – BUSI 

Ryspayeva & Salykova (2025) [7] DGAN-WP-TL 179.42 0.1448 BUSI 

This work StyleGAN2 259.65 0.25 BUSI 

This work StyleGAN3 140.67 0.06 BUSI 

 

We also benchmarked StyleGAN2 and StyleGAN3 on CBIS-DDSM and compared them with 
prior studies on mammogram synthesis (Table 5). Methods such as CycleGAN [17], BreastGAN [18] 
and StyleGAN-XL [19] reported very low FID scores, but they typically relied on larger and more 
diverse datasets. In contrast, our experiments used only 509 malignant samples from CBIS-DDSM, 
which explains the relatively higher FID values. Importantly, StyleGAN3 achieved a substantial 
improvement, reducing FID from 124.8 (StyleGAN2) to 90.6 and KID from 0.10 to 0.06. 

This comparison underlines the difficulty of working with CBIS-DDSM due to its small class 
size and limited diversity. Nevertheless, our StyleGAN3 results represent a clear improvement over 
both StyleGAN2 and DGAN-WP-TL under identical dataset constraints, and provide evidence that 
alias-free architectures improve mammogram synthesis as well. 
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Table 5 – Comparison of GAN-based methods for mammogram synthesis 
Author & Year Method FID KID Dataset 

Garrucho et al. (2023) [17] CycleGAN 73.16 - OPTIMAM 

Fan et al. (2021) [18] BreastGAN 21.25 - DDSM 

Prodan et al. (2023) [19] StyleGAN-XL 9.8 - ADMANI 

Ryspayeva & Salykova (2025) [7] DGAN-WP-TL 182.35 0.1795 CBIS-DDSM 

This work StyleGAN2 124.79 0.10 CBIS-DDSM 

This work StyleGAN3 90.58 0.06 CBIS-DDSM 

 

While StyleGAN3 necessarily improves generative quality, it does so at non-negligible 
computational cost. Combined training for 1000 epochs increased from 13.2 hours for StyleGAN2 to 
26.1 hours for StyleGAN3 for BUSI. For CBIS-DDSM, the analogous phenomenon was observed: 
20.5 hours for StyleGAN2 and 38.0 hours for StyleGAN3. These findings highlight the trade-off 
between quality and efficiency: StyleGAN3 is preferable when fidelity and structural consistency are 
critical, while StyleGAN2 may remain a practical alternative in resource-limited environments. 

Conclusion 
Two state-of-the-art generative adversarial network models, StyleGAN2 and StyleGAN3, are 

experimented upon under breast imaging datasets (BUSI and CBIS-DDSM) in the current research. 
The research novelty is in the information technology field: alias-free generative model assessment 
under stringent data scarcity and imbalance conditions. It was shown after extending the training to 
1000 epochs that StyleGAN3 significantly outperformed StyleGAN2 under all experimental 
conditions with appreciably diminished FID and KID values for two datasets. More specifically, 
StyleGAN3 achieved FID = 140.67 and KID = 0.06 for the dataset BUSI, and FID = 90.58 and KID = 
0.0 By focusing on malignant case synthesis, this work demonstrates that advanced GAN 
architectures can enhance the representation of minority classes, offering a practical approach to 
dataset balancing in breast cancer imaging6 for the dataset CBIS-DDSM, hence establishing 
stronger medical image synthesis task baselines.  

The implications are both methodological and computational. Firstly, they demonstrate that 
state-of-the-art alias-free generative design (StyleGAN3) translates to practical improvements in 
stability, faithful reproduction, and output sample diversity even for sparse datasets. Secondly, they 
reveal the computational-efficiency/image-quality trade-off: StyleGAN3 almost takes twice as much 
time to train as StyleGAN2, yet delivers much more realistic outcomes. These outcomes benefit the 
IT field by providing a plausible experimental framework, performance measures, and design trade-
off insights for GAN-based synthesis under data-constrained conditions. 

Future work will aim to scale these techniques to massive data sets, to combine pipelines of 
augmentation and transfer learning, and to construct hybrid architectures that combine alias-free 
generators with task-specialized priors. These areas will extend the use of generative models 
beyond healthcare even further, making data augmentation, simulation, and machine learning for 
small-sample domains even more of a core technology. 
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STYLEGAN2 ЖӘНЕ STYLEGAN3 МОДЕЛЬДЕРІНІҢ BUSI ЖӘНЕ CBIS-DDSM ДЕРЕКҚОРЛАРЫНДА 

СИНТЕТИКАЛЫҚ МЕДИЦИНАЛЫҚ СУРЕТТЕРДІ ГЕНЕРАЦИЯЛАУҒА БАҒАЛАНУЫ 
 
Медициналық кескіндер негізінде терең оқытуды қолдану көбінесе суреттердің шектеулі 

қолжетімділігіне және сыныптар теңгерімсіздігінің айқын байқалуына байланысты күрделене 
түседі. Мұндай жағдайда дәстүрлі машиналық оқыту алгоритмдерінің тиімділігі төмендейді. 
Генеративтік қарсылас желілер (GAN) бұл мәселені шешу үшін табиғи көрінетін синтетикалық 
суреттерді жасап, оқыту жиынтықтарын толықтыруға мүмкіндік береді. Бұл зерттеуде біз екі 
озық GAN архитектурасын, StyleGAN2 және StyleGAN3, екі ашық қолжетімді сүт безі кескіндерінің 
деректер жиынтығы негізінде салыстырдық: BUSI (ультрадыбыс, 210 қатерлі іс жағдайы) және 
CBIS-DDSM (маммография, 509 қатерлі іс жағдайы). FID және KID бойынша жүргізілді. BUSI 
деректерінде StyleGAN3 1000 эпохада FID = 140.7 және KID = 0.06 нәтижесін көрсетті, ал StyleGAN2 
үшін FID = 259.7 және KID = 0.25 болды. CBIS-DDSM деректерінде StyleGAN3 FID = 90.6 және KID = 
0.06 нәтижесін берді, ал StyleGAN2 сәйкесінше FID = 124.8 және KID = 0.10 көрсетті. Бұл нәтижелер 
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StyleGAN3 моделі шектеулі деректер жағдайында табиғиға ұқсас әрі әртүрлі суреттерді синтездей 
алатынын, бірақ сонымен бірге оқыту уақытының ұлғаюына әкелетінін көрсетеді. Ал StyleGAN2 
салыстырмалы түрде төмен есептеу шығындарымен ұқсас сапаға қол жеткізе алады. Зерттеу 
нәтижелері медициналық суреттерді генерациялау әлеуетін және сапа мен тиімділіктің деректерді 
көбейту (data augmentation) үшін тепе-теңдігін көрсетеді. 

Түйін сөздер: Генеративтік қарсылас желілер (GAN); StyleGAN2; StyleGAN3; FID; KID; Сүт 
безі ультрадыбысы; Маммография. 
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ОЦЕНКА STYLEGAN2 И STYLEGAN3 ДЛЯ СИНТЕТИЧЕСКОЙ ГЕНЕРАЦИИ МЕДИЦИНСКИХ 
ИЗОБРАЖЕНИЙ НА ДАТАСЕТАХ BUSI И CBIS-DDSM 

 

Глубокое обучение на медицинских изображениях обычно затруднено ограниченным 
доступом к данным и сильным дисбалансом классов, что снижает эффективность традиционных 
алгоритмов машинного обучения. Генеративные состязательные сети (GAN) могут 
использоваться для решения таких проблем путем создания реалистичных синтетических 
изображений, дополняющих обучающие выборки. В данном исследовании мы сравниваем две 
передовые архитектуры GAN, StyleGAN2 и StyleGAN3, на основе двух общедоступных наборов 
данных изображений молочной железы: BUSI (ультразвук, 210 случаев злокачественных опухолей) и 
CBIS-DDSM (маммография, 509 случаев злокачественных опухолей). Оценка проводилась с 
использованием метрик FID и KID. На BUSI StyleGAN3 при 1000 эпохах достиг FID = 140.7 и KID = 
0.06, тогда как StyleGAN2 показал FID = 259.7 и KID = 0.25. На CBIS-DDSM StyleGAN3 достиг FID = 
90.6 и KID = 0.06, а StyleGAN2 – FID = 124.8 и KID = 0.10. Эти результаты демонстрируют, что 
StyleGAN3 имеет тенденцию синтезировать более реалистичные и разнообразные изображения в 
условиях ограниченных данных, но при этом требует большего времени обучения, тогда как 
StyleGAN2 обеспечивает сопоставимое качество при меньших вычислительных затратах. 
Результаты указывают на потенциал генерации медицинских изображений и компромисс между 
качеством и эффективностью для задач аугментации данных при улучшении изображений 
молочной железы. 

Ключевые слова: Генеративные состязательные сети, StyleGAN2, StyleGAN3, FID, KID, 
Ультразвук молочной железы, Маммография. 
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