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EVALUATION OF STYLEGANZ2 AND STYLEGAN3 FOR SYNTHETIC MEDICAL IMAGE
GENERATION ON BUSI AND CBIS-DDSM DATASETS

Abstract: Deep learning from medical images is typically hindered by limited access to images and
severe imbalance of classes that reduces the effectiveness of typical machine learning algorithms. Generative
adversarial networks can be employed to address such issues by creating natural-appearing synthetic images
to complement training sets. In this study, we compare two advanced GAN architectures, StyleGAN2 and
StyleGANS, using two publicly available breast imaging datasets: BUSI (ultrasound, 210 malignant cases) and
CBIS-DDSM (mammography, 509 malignant cases). Evaluation was based on Fréchet Inception Distance and
Kernel Inception Distance. On BUSI, StyleGAN3 achieved FID = 140.7 and KID = 0.06 at 1000 epochs,
whereas StyleGAN2 achieved FID = 259.7 and KID = 0.25. On CBIS-DDSM, StyleGAN3 achieved FID = 90.6
and KID = 0.06, and StyleGAN2 achieved FID = 124.8 and KID = 0.10. These results demonstrate that
StyleGANS has a tendency to synthesize images that are more natural and diversified under limited dataset
conditions, at the cost of increased training times, whereas StyleGAN2 provides similar quality at less
expensive computational costs. The results indicate the potential of generating medical images and the trade-
off between image quality and efficiency in data augmentation for breast cancer image improvement.

Key words: Generative Adversarial Networks; StyleGAN2; StyleGAN3; FID; KID; Breast Ultrasound;
Mammography.

Introduction

Generative adversarial networks (GANS) currently represent the prominent research focus of
ongoing information technology research, bringing forth techniques for generating data, enriching it,
and running simulations of it in application domains wherein the data scarcity is a fundamental
challenge. Their ability to generate realistic, high-dimensional samples makes them particularly
attractive for small-sample environments, where traditional machine learning methods suffer from
overfitting and poor generalization [1].

One of the application domains wherein overfitting is especially ruthless is medical imaging,
where datasets are typically small, imbalanced, and costly to annotate. From the perspective of IT
research, medical data constitute the desirable test case to investigate generative models under
limited resources and limited data. Traditional GAN realizations, such as Wasserstein GANs (WGAN,
WGAN-GP) [2, 3], have demonstrated the potential of image generation by synthesis but typically
produce samples of restricted realism and unstable trainability. Latest models, such as those of the
StyleGAN family, feature advanced architecture innovations that significantly upgrade realism and
stability [4]. StyleGAN2 replaced the AdalN operator of StyleGAN by weight demodulation, appended
path-length regularization, and optimized generator/discriminator blocks, and all of them together
established novel quality baselines for synthetic images. Nevertheless, StyleGAN2 remained prone
to aliasing artifacts that may affect geometric consistency for longer-term training [5]. StyleGAN3
resolved the issue by adopting alias-free continuous phase transform-based architecture to boost
stability and ensure better preservation of structural details [6].

In the above prior work of the first author (Ryspayeva & Salykova, 2025), dataset balancing
was studied through a proprietary version of GAN (DGAN-WP-TL), and StyleGAN2 was tested over
three medical sets. That work, though, was limited to 500 epochs, and StyleGAN3 was omitted. The
present paper expands upon that comparison by systematically comparing StyleGAN2 and
StyleGAN3, training the two models to 1000 epochs, and comparing their output on two medical
image test sets: BUSI (ultrasound) and CBIS-DDSM (mammography) [7]. In our experiments, we
focus on synthesizing malignant cases, which represent the minority class in both BUSI and CBIS-
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DDSM datasets. The motivation is to mitigate class imbalance by generating realistic samples for
the underrepresented malignant category. The research aim is therefore systematic and
computational:

— To evaluate StyleGAN2 and StyleGAN3 under conditions of extreme data scarcity, with
medical images as a standard case scenario.

— To investigate their quality (FID, KID, SWD) and efficiency (training time), and therefore
highlight architecture trade-offs that hold for limited-sample IT applications.

In this in-depth analysis, we aim to achieve novel insights into the merits and limitations of
StyleGAN-based architectures in medical images and shed light upon their promise of making up for
dataset scarcity and breast cancer data skewness.

Methodology

This study was executed from two publicly accessible breast imaging datasets: the Breast
Ultrasound Images Dataset (BUSI) and the Curated Breast Imaging Subset of DDSM (CBIS-DDSM).
The breast ultrasound image dataset comprises 210 grayscale images of malignant cases. The
images were all reduced to 512x512 pixels and normalized to the [0,1] interval [8]. The CBIS-DDSM
dataset contains 509 mammograms that are labeled as malignant. The images were reduced to
256%256 pixels and normalized [9]. For this study, only the malignant subsets of BUSI (210 images)
and CBIS-DDSM (509 images) were used. The generative task was specifically targeted at
producing synthetic malignant samples, reflecting the minority class in both datasets.

Two of the most recent GAN architectures were taken into account in this study: StyleGAN2
and StyleGAN3. StyleGAN2 incorporates adaptive instance normalization, residual connections, and
path length regularization that, together, enable synthesizing images that are plausible to human
eyes. However, the architecture is known to be vulnerable to the aliasing artifacts that may be seen
under extended training [5]. StyleGAN3 addresses the above under the alias-free design that is
founded upon continuous phase-based transformations and filtered activations [6]. The above
innovation introduces geometric stability and reduces inconsistencies, making it particularly suitable
for medical images for which fine details matter. It is not restricted to medical imaging and can be
generalized to additional domains for synthetic data generation to support machine learning under
data-scarce conditions.

The training conditions were for the continuation of our previous research (Ryspayeva &
Salykova, 2025). In the case of the BUSI and CBIS-DDSM tests, the batch size was 2. That decision
was not only dictated by computational needs, however, but by the experience that such a setup
provides for stronger convergence for those specific sets of information. The models were all trained
for 1000 epochs, doubling the training period of the corresponding previous research, to interrogate
the eventual StyleGAN architecture convergence behavior. The training was conducted using the
Adam optimizer with B1 = 0.0 and B2 = 0.99 as hyperparameters, and the learning rate was
maintained at a constant value of 0.002. Optimizing was done for the non-saturating GAN loss under
R1 regularization. Adaptive augmentation was employed to achieve higher generalization in cases
where data availability was limited. All of the experiments were run from a single GPU, with memory
usage limited to approximately 10 GB [7].

Three standard metrics quantified performance.

— Fréchet Inception Distance (FID): measures similarity of distributions between real-world
and artificial images in the Inception feature space [10].

— Kernel Inception Distance (KID): calculates an unbiased similarity estimate by utilizing a
polynomial kernel, incredibly robust despite limited sample sizes [11].

— Sliced Wasserstein Distance (SWD): measures multi-scale distributional correspondence,
structure-sensitive [12].

For visualization purposes, we employed Principal Component Analysis (PCA) to project
higher-dimensional image representations into two-dimensional space in such a way that real and
synthetic data distributions can be comparatively analyzed. We perform PCA over (224x224) size
flattened grayscale images to visualize real and synthetic sample distribution alignment. The
principal components of the PCA are calibrated only over the real dataset and subsequently applied
to synthetic samples [13].

By integrating quality and efficiency analysis, it is possible to enable the holistic analysis of
StyleGAN architectures for small sample sizes. It is not limited to medical imaging since it can be
extended to synthetic data generation for machine learning support under data-scarce cases for
different domains.
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Experiments and Results

Two breast image datasets, CBIS-DDSM and BUSI, were tested with StyleGAN2 and
StyleGAN3. The quantitative quality of images was examined by applying the FID and KID. Both
distances were calculated for various epochs of training to track the change in the performance of
the models as they converged.

Table 1 demonstrates FID and KID scores calculated for the BUSI dataset. StyleGAN3 was
better than StyleGAN2 at every epoch. At 100 epochs, StyleGAN3 had already achieved significantly
lower FID (281.17 vs. 565.37) and KID (0.27 vs. 0.78), indicating stabler convergence. After longer
training, the gap continued to grow wider: at 1000 epochs, StyleGAN3 had achieved KID = 0.06 and
FID = 140.67, while StyleGAN2 achieved KID = 0.25 and FID = 259.65

Table 1 — FID, KID and SWD values for BUSI dataset

Epoch StyleGAN2 StyleGAN3
KID | FID| SWDJ “KID | FID| SWD |
100 0.78£0.02 | 565.37 - 0.27£0.02 | 281.17 -
500 0.4210.01 | 383.48 - 0.08£0.01 | 149.27 -
1000 0.25:0.01 | 259.65 5.62 0.06£0.01 | 140.67 3.21

The CBIS-DDSM dataset showed comparable trends, as shown in Table 2. StyleGAN2
showed continuous improvements over training, achieving 0.10 KID and 124.79 FID at 1000 epochs.
StyleGAN3 remarkably achieved better outcomes at every checkpoint: at 1000 epochs, it achieved
0.06 KID and 90.58 FID, indicating ~27% FID improvement compared to StyleGAN2.

Table 2 — FID and KID values for CBIS-DDSM dataset

Epoch StyleGAN2 StyleGAN3
KID | FID] SWD| "KID | FID] SWD|
100 0.56+0.01 401.20 - 0.11 129.84 -
500 0.130.01 143.75 - 0.07 97.27 -
1000 0.10+0.01 124.79 25.00 0.06 90.58 24.32

Taken together, these results highlight the superiority of StyleGAN3 for medical image
synthesis in both BUSI and CBIS-DDSM. On BUSI, StyleGAN3 reduced FID by nearly 46% and KID
by more than 4x compared to StyleGAN2 at 1000 epochs. On CBIS-DDSM, StyleGAN3 achieved a
27% reduction in FID and a 40% reduction in KID at the same epoch. These findings emphasize that
the alias-free design of StyleGAN3 can better capture subtle texture patterns and structural
consistency, which are critical in medical imaging.

In addition to FID and KID, SWD, another proxy for quantifying synthetic-to-real distributional
similarity, was also computed. StyleGAN3 had much lower SWD values, verifying its superior
structure information retention capability: 3.21 vs. 5.62 on BUSI, and 24.32 vs. 25.00 on CBIS-
DDSM.

In addition to image quality, the computational cost of model training was also of concern to
us (Table 3). On BUSI, StyleGAN2 was trained for ~13.2 h for 1000 epochs, while StyleGAN3 nearly
doubled the computational hours (~26.1 h). On CBIS-DDSM, StyleGAN2 was trained for ~20.5 h,
with StyleGAN3 taking it to ~38.0 h. While costly, the massive quality gains observed with StyleGAN3
may be justified when the realism of structure is of utmost importance.

Table 3 — Training time statistics for StyleGAN2 and StyleGAN3

Dataset Model Time / sec/kimg, 100 500 epochs, 1000 epochs,
epoch, s S epochs hours hours
StyleGAN2 74.0 145.4 ~2.05 h ~10.3 ~20.5
CBIS-DDSM StyleGAN3 136.7 268.6 ~3.8h ~19.0 ~38.0
BUSI StyleGAN2 47.5 226.2 ~1.32h ~6.6 ~13.2
StyleGAN3 94.0 447.6 ~2.61h ~13.1 ~26.1

In addition to the quantitative results, we also qualitatively examined the generative potential
of StyleGAN2 and StyleGAN3 for both of the datasets, BUSI and CBIS-DDSM. As indicated by
Figure 1, the evolutionary trend of the FID and KID values demonstrates StyleGAN3's faster
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convergence that achieves smaller values and variability compared to StyleGANZ2, in particular for
BUSI. The numerical pattern is also evidenced by examination of distributions in Figure 2, for which
the visualizations under PCA indicate a more comparable correspondence of the real and synthetic
samples for StyleGAN3. The SWD corresponding values also prove the finding: StyleGAN3 achieved
SWD of 3.21 for BUSI compared to 5.62 for StyleGAN2, and 24.32 for CBIS-DDSM compared to
25.00 for StyleGANZ2. It suggests that StyleGAN3 is capable of achieving representations that are
closest to the manifold of real medical images.

a) KID Across for StyleGAN2 and StyleGAN2 of BUSI and CBIS-DDSM datasets b) FID Across for StyleGAN2 and StyleGAN3 of BUSI and CBIS-DDSM datasets
—— StyleGAN2 BUSI 700 —— StyleGAN2 BUSI
1.0- —=- StyleGAN3 BUSI == StyleGAN3 BUS|
—— StyleGAN2 CBIS-DDSM —— StyleGAN2Z CBIS-DDSM
StyleGAN3 CBIS-DDSM 600 StyleGAN3 CBIS-DDSM
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Figure 1 — Evolution of generative performance across training epochs for BUSI

and CBIS-DDSM datasets:
(a) KID curves for StyleGAN2 and StyleGAN3, (b) FID curves for StyleGAN2 and StyleGAN3
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Figure 2 — PCA visualization of real and generated images from BUSI and CBIS-DDSM datasets:
(a) Real vs. StyleGAN2 on BUSI, (b) Real vs. StyleGAN3 on BUSI,
(c) Real vs. StyleGAN2 on CBIS-DDSM, (d) Real vs. StyleGAN3 on CBIS-DDSM

Qualitative analysis of the synthetic images also verifies these findings. In ultrasound
synthesis of BUSI (Figure 3, (a)), StyleGAN3 possesses sharper texture and more natural-looking
lesions with less artifact of smoothing when compared to StyleGAN2. Likewise, for CBIS-DDSM
mammography images (Figure 3, (b)), the two models synthesize the general breast silhouette;
however, the StyleGAN2 output images are subject to over-smoothing. In comparison, StyleGAN3
generates more detailed morphologies of parenchymal tissue with sharper anatomical structures,
although with noticeable subtle blurring evident.

In short, these results show that StyleGAN3 not only improves numerical outcomes but also
enhances the perceptual realism of simulated medical images. Such improvements are important
particularly for medical imaging cases, for which visual plausibility has a direct impact upon
diagnostic model learning and clinical interpretation of synthetic images.

ISSN 2788-7995 (Print) [IIokopiM yHHBEpCUTETiHIH Xabapubichl. TexHuKanbIK FeutbiMaap Ne 4(20) 2025 92
ISSN 3006-0524 (Online) Bulletin of Shakarim University. Technical Sciences Ne 4(20) 2025



Real images H)l SH] taset chl esol'(mS‘DT)SM (I taset
mple 3

Sample |
er:

StyleGAN2 of BUSI ated Ilmuu s by StyleGAN2 of CBIS-DDSM

rated images by StyleGAN3 of CBIS-DDSM
Sumple 4 Sample §

mages by StyleGAN

S, ample
- ”

=

Figure 3 — (a) Qualitative comparison of real and synthetic images. (a) BUSI ultrasound dataset:
first row — real samples, second row — StyleGAN2-generated, third row — StyleGAN3-generated.
(b) CBIS-DDSM mammography dataset: first row — real samples, second row — StyleGAN2-
generated, third row — StyleGAN3-generated

Discussion

Our experiment confirms that StyleGAN3 does make remarkable quality improvements of
synthetic medical images over StyleGAN2, particularly for the BUSI dataset. On 100, 500, and 1000
epochs, StyleGAN3 kept achieving reduced FID and KID values, showing that its aliasing-free
structure is better for learning fine-grained texture structures from ultrasound images. On CBIS-
DDSM, StyleGAN2 and StyleGAN3 displayed confident convergences, and StyleGAN3 achieved
extra reductions of FID (90.58 vs. 124.79) and KID (0.06 vs. 0.10) after epochs of 1000. These
results verify that the advantages of StyleGAN3 over StyleGAN2 in BUSI actually extend to
mammography, even when limited data are used. Previous works in Table 4, such as IGAN [14], 2S-
BUSGAN [15], and GSDA [16], achieved FID scores of 40-100, but often for reduced image sizes
(256 x 256 x 256) and larger datasets (=780 images). Our own prior work with DGAN-WP-TL [7]
achieved an FID of 179.4 and a KID of 0.1448 on BUSI (509 images), as it was experiencing issues
learning from smaller sets. In contrast, StyleGAN3 trained on just 210 BUSI images reached an FID
of 140.7 and a KID of 0.06 after 1000 epochs, representing a meaningful step forward. These results
underscore the potential of advanced architectures to mitigate data scarcity and produce high-quality
images despite limited training samples.

The results indicate that while StyleGAN3 does not yet surpass the very low FID values
reported in some larger-scale studies (e.g., IGAN), it significantly improves over our previous DGAN-
WP-TL baseline and StyleGAN2 under the same data constraints (Table 4).

Table 4 — Comparison of GAN-based methods for BUSI dataset synthesis

Author & Year Method FID KID Dataset
Alruily et al. (2023) [14] IGAN 41.86 - BUSI
Luo et al. (2023) [15] 2S-BUSGAN 101.00 0.6238 BUSI
Liu et al. (2023) [16] GSDA 68.78 - BUSI
Ryspayeva & Salykova (2025) [7] DGAN-WP-TL 179.42 0.1448 BUSI
This work StyleGAN2 259.65 0.25 BUSI
This work StyleGAN3 140.67 0.06 BUSI

We also benchmarked StyleGAN2 and StyleGAN3 on CBIS-DDSM and compared them with
prior studies on mammogram synthesis (Table 5). Methods such as CycleGAN [17], BreastGAN [18]
and StyleGAN-XL [19] reported very low FID scores, but they typically relied on larger and more
diverse datasets. In contrast, our experiments used only 509 malignant samples from CBIS-DDSM,
which explains the relatively higher FID values. Importantly, StyleGAN3 achieved a substantial
improvement, reducing FID from 124.8 (StyleGAN2) to 90.6 and KID from 0.10 to 0.06.

This comparison underlines the difficulty of working with CBIS-DDSM due to its small class
size and limited diversity. Nevertheless, our StyleGAN3 results represent a clear improvement over
both StyleGAN2 and DGAN-WP-TL under identical dataset constraints, and provide evidence that
alias-free architectures improve mammogram synthesis as well.
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Table 5 — Comparison of GAN-based methods for mammogram synthesis

Author & Year Method FID KID Dataset
Garrucho et al. (2023) [17] CycleGAN 73.16 - OPTIMAM
Fan et al. (2021) [18] BreastGAN 21.25 - DDSM
Prodan et al. (2023) [19] StyleGAN-XL 9.8 - ADMANI
Ryspayeva & Salykova (2025) [7] DGAN-WP-TL 182.35 0.1795 CBIS-DDSM
This work StyleGAN2 124.79 0.10 CBIS-DDSM
This work StyleGAN3 90.58 0.06 CBIS-DDSM

While StyleGAN3 necessarily improves generative quality, it does so at non-negligible
computational cost. Combined training for 1000 epochs increased from 13.2 hours for StyleGAN2 to
26.1 hours for StyleGAN3 for BUSI. For CBIS-DDSM, the analogous phenomenon was observed:
20.5 hours for StyleGAN2 and 38.0 hours for StyleGAN3. These findings highlight the trade-off
between quality and efficiency: StyleGANS is preferable when fidelity and structural consistency are
critical, while StyleGAN2 may remain a practical alternative in resource-limited environments.

Conclusion

Two state-of-the-art generative adversarial network models, StyleGAN2 and StyleGAN3, are
experimented upon under breast imaging datasets (BUSI and CBIS-DDSM) in the current research.
The research novelty is in the information technology field: alias-free generative model assessment
under stringent data scarcity and imbalance conditions. It was shown after extending the training to
1000 epochs that StyleGAN3 significantly outperformed StyleGAN2 under all experimental
conditions with appreciably diminished FID and KID values for two datasets. More specifically,
StyleGAN3 achieved FID = 140.67 and KID = 0.06 for the dataset BUSI, and FID = 90.58 and KID =
0.0 By focusing on malignant case synthesis, this work demonstrates that advanced GAN
architectures can enhance the representation of minority classes, offering a practical approach to
dataset balancing in breast cancer imaging6 for the dataset CBIS-DDSM, hence establishing
stronger medical image synthesis task baselines.

The implications are both methodological and computational. Firstly, they demonstrate that
state-of-the-art alias-free generative design (StyleGAN3) translates to practical improvements in
stability, faithful reproduction, and output sample diversity even for sparse datasets. Secondly, they
reveal the computational-efficiency/image-quality trade-off: StyleGAN3 almost takes twice as much
time to train as StyleGAN2, yet delivers much more realistic outcomes. These outcomes benefit the
IT field by providing a plausible experimental framework, performance measures, and design trade-
off insights for GAN-based synthesis under data-constrained conditions.

Future work will aim to scale these techniques to massive data sets, to combine pipelines of
augmentation and transfer learning, and to construct hybrid architectures that combine alias-free
generators with task-specialized priors. These areas will extend the use of generative models
beyond healthcare even further, making data augmentation, simulation, and machine learning for
small-sample domains even more of a core technology.
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STYLEGAN2 XOHE STYLEGAN3 MOAENbOEPIHIH BUSI XXOHE CBIS-DDSM AEPEKKOPJIAPbIHOA
CUHTETUKANDbIK MEOUUUHANDBIK CYPETTEPAI FTEHEPALUUANAYFA BAFAJIAHYDbI

MeduuyuHarnbik KeckiHOep HeeziziH0e mepeH OKbimyObl KondaHy kebiHece cypemmepldid wekmeyri
KormkemimOinigiHe JXeHe CbIHbINmMap meHaepimcisdieiHiH alKbiH 6alkarnybiHa 6alnaHbicmbl KypderneHe
mycedi. MyHOal xarlaltida Oacmyprni MawuHasblK OKbimy aszopummOepiHiH muimdiniei memeHOeudi.
leHepamusmik Kapcbinac xeninep (GAN) 6yn maceneHi wewy ywiH maburu KepiHemiH CUHmMemukarbiK
cypemmepdi xacar, OKbImy XUbIHMbIKMapbIH MOsbIKMbIpyFra MyMKiHOiK 6epedi. byn 3epmmeyde 6i3 eki
03biKk GAN apxumekmypachbiH, StyleGAN2 xoHe StyleGAN3, eki awbIK KormkemimOi cym 6e3i KecKiHOepiHIH
Oepekmep XubIiHMbIfbl HeziziHde canbicmbipdbiK: BUSI (yribmpadsibeic, 210 Kkamepni ic xxardalbl) XoHe
CBIS-DDSM (mammoepacgpus, 509 kamepni ic xardalib). FID xeHe KID 6olbiHwa xypeisindi. BUSI
OepexkmepiHde StyleGAN3 1000 annoxada FID = 140.7 xoaHe KID = 0.06 HomuxeciH kepcemmi, an StyleGAN2
ywiH FID = 259.7 xoHe KID = 0.25 6051db1. CBIS-DDSM depekmepiHde StyleGAN3 FID = 90.6 xoHe KID =
0.06 HomuxxeciH 6epdi, an StyleGAN2 calikeciHwe FID = 124.8 xoHe KID = 0.10 kepcemmi. byn Hemuxxenep
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StyleGAN3 moderni wekmeyni depekmep xardalibiHOa maburura ykKcac api spmypiii cypemmepdi cuHmesoel
anamsbliHbiH, 6ipaK COHbIMEH bipee OKbImMy yaKblMbIHbIH YiiFalobiHa oKkesnemiHiH kepcemedi. An StyleGAN2
canbicmbipmarbl mypde memMeH ecenmey WhblfbIHOapbIMEH yKcac carara KOsl xemkize anadbl. 3epmmey
Hemu)xernepi MeduyuHarbiK cypemmepdi 2eHepauyusiniay arieyemiH xoHe carna MmeH muiMoinikmiH depekmepdi
kebelimy (data augmentation) ywiH mene-meHdiziH kepcemeai.

TyiiH ce30ep: eHepamusmik Kapcbinac xeninep (GAN); StyleGAN2; StyleGAN3; FID; KID; Cym
6e3i ynbmpadbibbickl; Mammozpagusi.
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OLIEHKA STYLEGAN2 U STYLEGAN3 Ansi CUHTETUYECKOW MrEHEPALIUM MEOULIMHCKNX
M30BPAXEHUN HA OATACETAX BUSI U CBIS-DDSM

nybokoe o0byyeHue Ha MeOUUUHCKUX U306paxeHusix O0ObI4HO 3ampyOHEeHO OepaHUYEeHHbIM
docmyrnom K OaHHbIM U CullbHbIM ducbanaHCOM Kaccos, Ymo CHUXaem 3ghghekmueHOCmMb mpaduyUOHHbIX
anzopummos  MawuHHo20 oby4yeHus. [eHepamueHble cocmszamernbHble cemu (GAN) moaym
ucronb3o08ambcsl O peweHuUsi makux npobrem fnymem co30aHus peaniucmuYHbIX CUHMEeMmMUYEeCKUX
uzobpaxeHul, dononHswwux obydarujue 6bibopku. B daHHoOM uccnedosaHuu Mbi cpasHusaem dse
nepedosnie apxumekmypbl GAN, StyleGAN2 u StyleGAN3, Ha ocHoge dgyx obuwedocmyriHbix Habopos
OaHHbIX uzobpaxxeHuli MonoyHou xenesbl: BUSI (ynbmpa3ssyk, 210 criiy4yaes 3/710Kka4eCmeeHHbIX onyxonel) u
CBIS-DDSM (mammoepachusi, 509 cnyvaes 3r0kadyecmeeHHbIX ornyxonel). OueHka npoeodunacb C
ucrnonb3osaHuem mempuk FID u KID. Ha BUSI StyleGAN3 npu 1000 anoxax docmue FID = 140.7 u KID =
0.06, mozda kak StyleGANZ2 nokasan FID = 259.7 u KID = 0.25. Ha CBIS-DDSM StyleGAN3 docmue FID =
90.6 u KID = 0.06, a StyleGAN2 — FID = 124.8 u KID = 0.10. 3mu pe3ynbmambl 0eMOHCMPUPYMm, 4Ymo
StyleGAN3 umeem meHOeHUUI0O cuHmMe3supogamse boriee peanucmuyHble U pa3HoobpasHble U306paxeHus 8
yCri08UsIX O2paHUYeHHbIX OaHHbIX, HO rpu amom mpebyem 6ornbwiezo epemMeHuU oby4yeHusi, moeada Kak
StyleGAN2 obecneqyusaem coriocmaguMoe Kayecmeo [rpu MeHbWUX 6bldUCiUmerbHbIX 3ampamax.
Pe3ynbmambi yka3bigarom Ha rnomeHyuasn 2eHepayuu MeOUUUHCKUX U300paxkeHUl U KOMIPOMUCC MexXOy
KadYecmeoMm u ahgpekmusHocmbio Onsi 3adad ayaMeHmauyuu OaHHbIX Mpu  yny4qyweHuUU u3obpaxxeHul
MOJI0YHOU XKese3sbl.

Knroyesnie cnoesa: eHepamusHbie cocmsa3zamernbHble cemu, StyleGAN2, StyleGAN3, FID, KID,
Yrnbmpa3ssyk Mono4yHol xernesbl, Mammozpacgpusi.
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