Балым Әлібекқызы Әлібекова* – С. Аманжолов атындағы Шығыс Қазақстан Университетінің «Беттік инженерия және трибология» ҒЗО инженері, Өскемен, Қазақстан; e-mail: balymalibekova304@gmail.com. ORCID: https://orcid.org/0009-0001-7644-4527.

Information about the authors

Zhuldyz Bolatkizy Sagdoldina – PhD, Associate Professor, senior Researcher at the Research Center for «Surface Engineering and Tribology» of the East Kazakhstan University named after Sarsen Amanzholov, Ust-Kamenogorsk, Kazakhstan; e-mail: sagdoldina@mail.ru. ORCID: https://orcid.org/0000-0001-6421-2000.

Mikhail Vyacheslavovich Ermolenko – candidate of Technical Sciences, acting associate professor of the department «Technical physics and heat power engineering» Shakarim University of Semey, Semey, Kazakhstan; e-mail: tehfiz@mail.ru. ORCID: https://orcid.org/0000-0002-1677-8023.

Daniyar Nurzhanovich Nurgaliev – master of Technical Sciences, Senior Lecturer at the Department of «Technical Physics and Heat Power Engineering» Shakarim University of Semey, Semey, Kazakhstan; e-mail: daniarsemei@mail.ru. ORCID: https://orcid.org/0009-0004-1650-1077.

Sanzhar Daurenuly Bolatov – junior researcher of Scientific Research Center «Surface Engineering and Tribology» at Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk, Kazakhstan; e-mail: sanzharbolatov94@gmail.com. ORCID: https://orcid.org/0009-0003-3136-0535.

Balym Alibekovna Alibekova* – engineer of Scientific Research Center «Surface Engineering and Tribology» at Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk, Kazakhstan; e-mail: balymalibekova304@gmail.com. ORCID: https://orcid.org/0009-0001-7644-4527.

Поступила в редакцию 08.12.2024 Поступила после доработки 10.12.2024 Принята к публикации 12.12.2024

https://doi.org/10.53360/2788-7995-2024-4(16)-40

CC BY 4.0

МРНТИ: 55.22.00

Д.Н. Какимжанов*, **М.К. Даутбеков, Е.С. Турабеков, Р.М. Куанышбай, А.С. Рустемов** TOO PlasmaScience.

070018, Казахстан, г.Усть-Каменогорск, ул.Гоголя 7Г *e-mail: dauir_97@mail.ru

ВЛИЯНИЕ ИЗМЕНЕНИЯ РАССТОЯНИИ ИМПУЛЬСНО-ПЛАЗМЕННОЙ ОБРАБОТКИ НА СВОЙСТВА ДЕТОНАЦИОННЫХ ПОКРЫТИЙ CR₃C₂-NICR

наиболее Аннотация: Одним из перспективных методов повышения эксплуатационных свойств и увеличения срока службы изделий является нанесение функциональных покрытий с использованием различных технологий напыления. Учитывая высокую стойкость к износу и коррозии металлокерамической композиции Cr₃C₂-NiCr, такие покрытия начали активно использовать для защиты стальных элементов в горячих частях котлов, предназначенных для сжигания отходов, а также в электрических печах и оборудовании, работающем на природном газе. В этом исследовании рассматривается влияние расстояния при импульсно-плазменной обработке на структурные характеристики поверхностного слоя детонационных покрытий Cr₃C₂-NiCr. Мы изучаем процесс, включающий нанесение таких покрытий с применением детонационного устройства, а затем их обработку импульсно-плазменным методом. Результаты показывают, что после такой обработки происходит плавление и выравнивание структурных компонентов покрытий, не приводящее к их разрушению от воздействия плазменных импульсов. Микроструктура покрытий представляет собой расплавленный металлокерамический материал на основе Cr₃C₂-NiCr. После импульсноплазменной обработки на поверхности обнаружены фазы оксида хрома Cr₂O₃, увеличивается интенсивность пиков Cr₃C₂ и появляются новые рефлексы Cr₃C₂, что свидетельствует об увеличении содержания фазы Cr₃C₂. Также замечено, что после этой обработки микроструктура становится более однородной, что приводит к уплотнению детонационного покрытия на основе Cr₃C₂-NiCr.

Ключевые слова: Металлокерамические покрытия, детонационное напыление, импульсно-плазменная обработка, , твердость, износостойкость, фаза, трибология.

Введение

Актуальной задачей является повышение надежности и долговечности изделий, эксплуатационные характеристики которых определяются свойствами их рабочих поверхностей. Один из наиболее перспективных способов улучшения эксплуатационных свойств и повышения долговечности изделий – нанесение на их поверхности функциональных покрытий с применением различных технологий напыления. С учетом относительно высокой стойкости к износу и коррозии металлокерамической композиции Сг₃С₂-NiCr, данные покрытия начали широко применяться для нанесения износокоррозионностойких покрытий на стальные элементы в горячей части котлов для сжигания отходов, а также в электрических печах и оборудовании, работающем на природном газе [1, 2].

Эти металлокерамические покрытия наносят с помощью разных способов газотермического напыления, таких как плазменное напыление, метод детонационного напыления, а также высокоскоростного газопламенного напыления (HVOF, HVAF) [3-6].

Несмотря на высокое качество покрытий Cr₃C₂-NiCr, нанесенные методами HVOF и HVAF, данные процессы имеет определённые недостатки. Более низкие температуры процесса и более высокая скорость частиц создают еще один тип изменения химического состава, так как карбидные зерна склонны к отскоку при ударе, снижая содержание карбида в покрытии [4]. В работах [4, 5] также установлено, что потеря углерода и поглощение кислорода происходят в значительной степени в обоих процессах, так как водяной пар, образующийся при сжигании углеводородного топлива, действует как сильный окислитель [6]. Плазменный способ обеспечивает нагрев частиц до более высоких температур, чем детонационный. Ограничения 0 температуре при детонационном способе нанесения покрытий компенсируются более высокой кинетической энергией частиц, что позволяет наносить и тугоплавкие материалы.

В работе [9] было исследовано коррозионное поведение покрытий Ni20Cr, полученных с методами детонационного напыления (ДН), высокоскоростного газоплазменного напыления (HVOF) и холодного напыления. Сравнительный анализ трех различных покрытий показал, что детонационное напыления оказалась лучше с точки зрения защиты от горячего коррозионного разрушения. Это может быть связано с развитием защитной фазы Cr₂O₃ наряду с NiCr₂O₄. Кроме того, покрытие, полученное методом ДН более плотное по сравнению с холодным напылением и HVOF. В работе [10] было обнаружено, что покрытие Cr₃C₂-NiCr, полученное методом ДН значительно уменьшает скорость эррозионно-коррозионных процессов и окисления, по сравнению с покрытиями, полученных методом HVOF.

Повышение качественных характеристик газотермических покрытий может быть достигнуто внешним высокоэнергичным воздействием [11]. Наиболее эффективная технология – это комплексная импульсно-плазменная обработка (ИПО), включающая модифицирование поверхности: магнитным полем, электрическим током (потоком заряженных элементарных частиц), высоко градиентной тепловой струей (плазмой), содержащей металлические и неметаллические легирующие элементы [8, 12].

С учетом изложенного выше критерием оптимизации импульсно-плазменной обработки покрытий Cr₃C₂-NiCr выбрана максимальная степень их оплавления и уплотнения, что достигается варированием дистанции воздействия [13]. Вместе с тем уменьшение дистанции ограничивается появлением признаков разрушения покрытий (например, развиваются трещины).

Целью настоящей работы является изучение влияние дистанции импульсноплазменной обработки на структуру и свойство детонационных покрытий на основе Cr₃C₂-NiCr.

Материал и методы

В качестве напыляемого материала использовали порошок Cr₃C₂-NiCr (75/25) (фирмы H.C. Starck: AMPERIT® 584.054) с дисперсностью 10-45 мкм. Покрытия наносили на образцы из стали 12X1МФ методом детонационного напыления (DS) на многокамерной детонационной

установке [14]. Для создания высоких параметров (давление, скорость) продуктов сгорания использовали многокамерную конструкция устройства, в котором реализуется режим детонационного горения газовой смеси в специально спрофилированных камерах и последующее аккумулирование энергии сгорания от этих камер в цилиндрическом стволе [14]. Устройство обеспечивает образование струи продуктов сгорания для ускорения и нагрева напыляемый порошка и нанесения высококачественных металлических и керамических покрытий [14, 15].

На рисунке 1 показан общий вид многокамерного детонационного устройства [14], которое было разработано в Институте электросварки им. Е.О. Патона НАН Украины. Устройство имеет три камеры: 1 – форкамера для инициирования процесса детонации; 2 – основная цилиндрическая камера, где происходит развитие детонационного режима сгорания; 3 – кольцевая полусферическая камера со щелевым выходом в коноидную камеру, соосную со стволом. Ускорение и нагрев дозы порошка осуществляется в цилиндрическом стволе – 4. Дозирование и подача порошка осуществляется через кольцевую щель 5. Инициирование детонации осуществляется автомобильной свечой – 6. Замеры давления и скорости продуктов сгорания осуществляется датчиками давления 7 и 8, установленных на концах ствола. В полусферической камере реализуется режим детонации в уголковых концентраторах, что существенно повышает скорость и полноту сгорания компонентов горючей смеси. Продукты сгорания из камер аккумулируются и обеспечивают их высокое давление и температуру. В конечном итого это реализуется в высокую скорость и достаточно высокую температуру, обеспечивающую возможность напыления керамических покрытий [16].

Рисунок1 – Схема детонационного устройства 1 – форкамера; 2 – цилиндрическая камера; 3 - кольцевая полусферическая камера; 4 – ствол; 5 – кольцева щель; 6 – свеча для иницирования детонации; 7, 8 – датчики давления

|--|

Компоненты смеси		Расход, м ³ /час
1 камера	O2	2,92
	воздух	1,33
	C ₃ H ₈	0,66
2 камера	O2	2,93
	воздух	1,43
	C ₃ H ₈	0,66
Транспортирующий газ:		0,9

Для модифицирования детонационного покрытия на поверхности изделия была применена импульсно-плазменная обработка (ИПО) [16]. Формирование высокоэнергетических импульсов осуществляется в плазмотроне путем реализации в нем нестационарных детонационных режимов горения горючих газовых смесей (C₃H₈ и O₂) между двумя коаксиальными электродами. Энергетические параметры продуктов нестационарного детонационного горения (импульсной плазменной струи) определяли решением двумерной нестационарной задачи распространения детонационной волны (ДВ) в электрическом поле между двумя коаксиальными электродами плазмотрона. На рисунке рисунке 2б импульсный плазматрон, который состоит из детонационной камеры 1, где осуществляется формирование горючей газовой смеси и инициирование детонационного ее сгорания. Плазматрон имеет центральный электрод – анод 3, конический электрод – катод 4, испаряемый электрод – 5.

Электроды включены в электрическую цепь к специальному источнику питания – 2, sample – 7

При инициировании детонации продукты сгорания поступают из детонационной камеры в межэлектродный зазор – 4 и замыкают электрическую цепь. Стационарное детонационное сгорание горючих газов переходит в нестационарное, которое получает дополнительную энергию через электропроводный слой продуктов сгорания – 7. При выбросе плазменной струи – 8 из плазматрона, она замыкает электрическую цепь между электродом – анодом и поверхностью изделия – катодом – 9. В результате прохождения по этой струе электрического тока, плазма дополнительно нагревается за счет Джоулева тепловыделения. Расходуемый электрод – 5 обеспечивает ввод в плазменную струю легирующих элементов. При напряженности электрического поля между электродами 3.5х10⁵ В/м скорость плазмы на выходе из плазмотрона достигает 4 км/с, а температура 12000 К. В момент взаимодействия плазменного импульса с поверхностью изделия – 6 в зоне контакта образуется область ударно-сжатого плазменного слоя.

Рисунок 2 – Схема импульсно-плазменного устройства 1 – детонационная камера, 2 – источник питания, 3,4 – коаксиальные электроды, 5 – эродированный электрод, 6 – плазма, 7 – образец

Параметры импульсно-плазменной обработки приведены в таблице 2.

Таблица 2 – Параметры ИПО

Параметр	Величина
Напряжение на конденсаторной батареи (В)	3200
Емкость конденсаторной батареи (мкФ)	960
Индуктивность разрядного контура (мкГн)	30
Частота плазменных импульсов (Гц)	1.2
Скорость перемещения (мм/сек)	3,4
Дистанция до образца (мм)	40, 50, 60, 70

Фазовый состав покрытий ДН и ДН/ИПО изучали с использованием метода рентгеноструктурного анализ на рентгеновском дифрактометре X'PertPRO с Cu-Kαизлучением ($\lambda = 2,2897$ Å), напряжение 40 кВ и ток 30 мА. Расшифровку дифрактограмм проводили с помощью программы HighScore, измерения проводились в диапазоне 20, равном 20⁰-90⁰, с шагом 0,02 и временем счета 0,5 с/шаг. Микроснимки поверхности покрытия получили с помощью металлографического микроскопа (модель Altami MET 5S, OOO «Альтами». Шероховатость поверхности покрытий R_a оценивалась с помощью профилометра модели 130.

Твердость поперечного сечения образцов измеряли методом наноиндентирование на нанотвердомере НаноСкан-4D в соответствии с ГОСТ Р8.748-2011, с использование индентора Берковича воспроизводили 15 уколов при нагрузке 100 мН.

Трибологические испытания на трение скольжения проводили на трибометре TRB³ с использованием стандартной методики «шар-диск» (международные стандарты ASTM G 133-95 и ASTM G99), где в качестве контртела использовали шарик диаметром 6,0 мм, из стали с покрытием SiC, при нагрузке 6 Н и линейной скорости 15 см/сек, радиусом кривизны износа 5 мм, пути трения 1200м.

Результаты и обсуждение

Фазовый состав покрытий изучали с использованием метода рентгеноструктурного анализ на рентгеновском дифрактометре X'PertPRO. На рисунке 3 представлены дирактогарммы поверхности покрытия до и после импульсно-плазменной обработки. В покрытиях до импульсно-плазменной обработки обнаружены следующие фазовые составляющие: NiCr, Cr₃C₂ и Cr₇C₃ фазы (рис. 3). После ИПО на поверхности обнаружены фазы оксида хрома Cr₂O₃ (рис. 3). При этом, после ИПО на рентгенограмее наблюдается рост интенсивности пиков карбида хрома Cr₃C₂ кроме того, на дифрактограмме выявлены многочисленные новые рефлексы, относяшиеся к этой фазе, причиной которому является кратковременная активизация поверхности покрытия из за импульсной плазмы, где плазма углерод кислород обуславливает протекания содержащая активный И двух взаимоисключающих химико термических процессов окисления и карбюризации. Сочетание твердых фаз оксида и карбида хрома в упрочненой металлической матрице существенно повышает стойкость полученного материала в условиях абразивного износа. Большой рост интенсивности пиков карбида хрома Cr₃C₂ и Cr₂O₃ наблюдается при дистанци 40мм. А уже при дистанции 70 мм видно уменьшение интенсивности пиков Cr₃C₂ и Cr₂O₃.

Методом наноиндентирование определяли твердость детонационных покрытий Cr₃C₂-NiCr до и после импульсно-плазменной обработки. Результаты измерение твердости показаны на рисунке 4 .Твердость покрытий после импульсно-плазменной обработки имеет высокое значение по сравнению с исходным покрытием. Величина твердости зависит от расстояния обработки. Высокая твердость наблюдается после импульсно-плазменной обработки на расстоянии 40 мм (~17,6 GPa), а по мере отдаление плазмотрона от обрабатываемой поверхности твердость снижается. Это может быть связано со степенью локализованного плавления материала, которая зависит от расстояния воздействия импульсной плазмы.

Рисунок 3 – Рентгенограммы поверхности материала покрытия Cr₃C₂-NiCr до и после импульсно-плазменной обработки

Рисунок 4 – График распределения твердости и по глубине покрытий Cr₃C₂-NiCr до (а) и после PPT (b)

ISSN 2788-7995 (Print) ISSN 3006-0524 (Online) Шәкәрім университетінің хабаршысы. Техникалық ғылымдар № 4(16) 2024 314 Bulletin of Shakarim University. Technical Sciences № 4(16) 2024 На рисунке 5. отображены результаты измерения шероховатости поверхности материала покрытий на основе Cr₃C₂+NiCr, согласно которым установлено что поверхность имеет неоднородную структуру с наличием пор. В качестве основного параметра оценки шероховатости поверхности покрытия была выбрана величина R_a, которая представляет собой среднее арифметическое отклонение профиля. Значение щероховатости зависит от расстояния обработки. Самая низкая героховатость наблюдается после импульсноплазменной обработки на расстоянии 40 мм (рис. 5b). Значения шероховатости поверхности на ≈ 42% по сравнению с параметрами шероховатости покрытия до РРТ. А также и других дистанциях видно снижение шероховатости (рис. 5c,d,e). Такое снижение показателя шероховатости обусловлено оплавлением импульсной плазмой выступающих фрагментов и пор шероховатости покрытия, которая способствовала снижению значения шероховатости.

Рисунок 5 – Снимки рельефа и шероховатость поверхности покрытии Cr₃C₂ до (а) и после (б – 40 мм, в – 50 мм, г – 60 мм, д – 70 мм) импульсно-плазменной обработки

Одним из основных свойств отвечающих за долговечность изделий является трибологические параметры, которые в настоящей работе оценивалось значением объёма износа покрытий до и после ИПО по схеме «шар-диск» (рис. 6а). По полученным значениям профилометра были построены профилограммы, а так же с использованием специальной программы были получены значения для расчета объемов износа до и после ИПО (рис. 66). испытания показали, что после РРТ Результаты покрытие имеет повышенную износостойкость согласно подтверждению РДА это вероятнее всего связано с повышением долей Cr₃C₂ карбидной фазы, которая обладает высокой стойкостью к износу. Согласно исследованию трибологических характеристик поверхности покрытия установлено, что импульсно плазменная обработка оказала существенное влияние на значение коэффициента трения поверхности покрытия и износостойкость (повышена почти в 2 раза по сравнению с значениями до ИПО). Износостойкость зависит от расстояния обработки. На основании полученных данных наиболее износостойким является покрытие обработанный на расстоянии 40 мм.

Заключение

Изучено влияние дистанции импульсно-плазменной обработки на структуру и свойство детонационных покрытий на основе Cr₃C₂-NiCr. На основании анализа результатов исследования можно сделать следующие выводы: – Установлено, что после ИПО на поверхности обнаружены фазы оксида хрома Cr_2O_3 , а также увеличивается интенсивность пиков Cr_3C_2 и появляются новые рефлексы Cr_3C_2 , которые указывает на увеличение содержания Cr_3C_2 фазы;

 Покрытие, обработанное на расстоянии 40 мм, характеризуется минимальной пористостью по сравнению с другими режимами ИПО. Снижение показателя шероховатости обусловлено оплавлением импульсной плазмой выступающих фрагментов и пор шероховатости покрытия

– На основании полученных данных наиболее оптимальной является импульсноплазменная обработка на расстоянии 40 мм.

Можно рекомендовать эту технологию нанесения покрытий, включающей детонационного напыления и последующей импульсно-плазменной обработки, как оптимальный способ защиты поверхностей деталей, работающих в экстремальных условиях эрозионного и абразивного износа

Список литературы

1. Erosion and corrosion behavior of shrouded plasma sprayed Cr3C2-NiCr coating / Lu H. et al // Surface and Coatings Technology. – 2020. – T. 388. – C. 125534. https://doi.org/10.1016/j.surfcoat.2008.04.043.

2. Pogrebnyak A.D., Tyurin Y.N. Modification of material properties and coating deposition using plasma jets / A.D. Pogrebnyak, Y.N. Tyurin // Physics-Uspekhi. – 2005. – T. 48, № 5. – P. 487. https://doi.org/10.1070/pu2005v048n05abeh002055.

3. Dominant effect of carbide rebounding on the carbon loss during high velocity oxy-fuel spraying of Cr3C2–NiCr / C.J. Li et al // Thin Solid Films. – 2002. – T. 419, № 1-2. – P. 137-143. https://doi.org/10.1016/S0040-6090(02)00708-3.

4. Janka L. et al. Influence of heat treatment on the abrasive wear resistance of a Cr3C2NiCr coating deposited by an ethene-fuelled HVOF spray process / L. Janka et al // Surface and Coatings Technology. – 2016. – T. 291. – P. 444-451. https://doi.org/10.1016/j.surfcoat.2016.02.066.

5. Matikainen V. A study of Cr3C2-based HVOF-and HVAF-sprayed coatings: abrasion, dry particle erosion and cavitation erosion resistance / V. Matikainen, H. Koivuluoto, P. Vuoristo // Wear. – 2020. – T. 446. – P. 203188. https://doi.org/10.1016/j.wear.2020.203188.

6. High temperature oxidation of metal, alloy and cermet powders in HVOF spraying process / K. Korpiola et al / Helsinki University of Technology. – 2004.

7. Technology and properties of nanostructured detonation coatings / M.V. Nenashev et al // Izv. RAS SamSC. – 2011. – T. 13. – P. 390-393.

8. Influence of pulsed plasma treatment on phase composition and hardness of Cr3C2-NiCr coatings / D.N. Kakimzhanov et al // Eurasian Journal of Physics and Functional Materials. – 2021. – T. 5, № 1. – P. 45-51. https://doi.org/10.32523/ejpfm.2021050106.

9. The experience of research and application of technology for applying detonation coatings / V.Y. 2010. 569-575. Ulianitsky et RAS SamSC. – T. 12. al // Izv. _ _ C. https://doi.org/10.48081/YBCY7199.

10. Modern techniques for automated acquiring and processing data of diffraction electron microscopy for nano-materials and single-crystals / V. Sydorets et al // Materials Science Forum. – Trans Tech Publications Ltd. – 2020. – T. 992. – P. 907-915.

11. Автоматическая сварка / Л.И. Маркашова и др. // Автоматическая сварка. – 2017. – № 09. – С. 06.

12. Structural features and tribological properties of detonation gun sprayed Ti–Si–C coating / B. Rakhadilov et al // Coatings. – 2021. – T. 11. – № 2. – P. 141. https://doi.org/10.3390/ coatings11020141.

13. Microstructural characterization and abrasive wear performance of HVOF sprayed Cr3C2–NiCr coating / G.C. Ji et al // Surface and Coatings Technology. – 2006. – T. 200, № 24. – P. 6749-6757. https://doi.org/10.1016/j.surfcoat.2005.10.005.

14. Колисниченко О.В. Эффективность процесса напыления покрытий с использованием многокамерного детонационного устройства / О.В. Колисниченко, Ю.Н. Тюрин, Р. Товбин // Автоматическая сварка. – 2017.

15. Тюрин Ю.Н., Жадкевич М.Л. Плазменные упрочняющие технологии / Ю.Н. Тюрин, М.Л. Жадкевич // Наукова думка, Киев. – 2008. – 218 с.

16. Процессы залечивания микротрещин в металле под действием импульсов тока высокой плотности / К.В. Кукуджанов и др. // Проблемы прочности и пластичности. – 2016. – Т. 78, № 3. – С. 300-310. https://doi.org/10.32326/1814-9146-2016-78-3-300-310.

References

1. Erosion and corrosion behavior of shrouded plasma sprayed Cr3C2-NiCr coating / Lu H. et al // Surface and Coatings Technology. – 2020. – T. 388. – S. 125534. https://doi.org/10.1016/ j.surfcoat.2008.04.043. (In English).

2. Pogrebnyak A.D., Tyurin Y.N. Modification of material properties and coating deposition using plasma jets / A.D. Pogrebnyak, Y.N. Tyurin // Physics-Uspekhi. – 2005. – T. 48, № 5. – R. 487. https://doi.org/10.1070/pu2005v048n05abeh002055. (In English).

3. Dominant effect of carbide rebounding on the carbon loss during high velocity oxy-fuel spraying of Cr3C2–NiCr / C.J. Li et al // Thin Solid Films. – 2002. – T. 419, № 1-2. – R. 137-143. https://doi.org/10.1016/S0040-6090(02)00708-3. (In English).

4. Janka L. et al. Influence of heat treatment on the abrasive wear resistance of a Cr3C2NiCr coating deposited by an ethene-fuelled HVOF spray process / L. Janka et al // Surface and Coatings Technology. – 2016. – T. 291. – R. 444-451. https://doi.org/10.1016/j.surfcoat.2016.02.066. (In English).

5. Matikainen V. A study of Cr3C2-based HVOF-and HVAF-sprayed coatings: abrasion, dry particle erosion and cavitation erosion resistance / V. Matikainen, H. Koivuluoto, P. Vuoristo // Wear. – 2020. – T. 446. – R. 203188. https://doi.org/10.1016/j.wear.2020.203188. (In English).

6. High temperature oxidation of metal, alloy and cermet powders in HVOF spraying process / K. Korpiola et al / Helsinki University of Technology. – 2004. (In English).

7. Technology and properties of nanostructured detonation coatings / M.V. Nenashev et al // Izv. RAS SamSC. – 2011. – T. 13. – R. 390-393. (In English).

8. Influence of pulsed plasma treatment on phase composition and hardness of Cr3C2-NiCr coatings / D.N. Kakimzhanov et al // Eurasian Journal of Physics and Functional Materials. – 2021. – T. 5, № 1. – R. 45-51. https://doi.org/10.32523/ejpfm.2021050106. (In English).

9. The experience of research and application of technology for applying detonation coatings / V.Y. Ulianitsky et al // Izv. RAS SamSC. – 2010. – T. 12. – S. 569-575. https://doi.org/10.48081/ YBCY7199. (In English).

10. Modern techniques for automated acquiring and processing data of diffraction electron microscopy for nano-materials and single-crystals / V. Sydorets et al // Materials Science Forum. – Trans Tech Publications Ltd. – 2020. – T. 992. – R. 907-915. (In English).

11. Avtomaticheskaya svarka / L.I. Markashova i dr. // Avtomaticheskaya svarka. – 2017. – № 09. – S. 06. (In Russian).

12. Structural features and tribological properties of detonation gun sprayed Ti–Si–C coating / B. Rakhadilov et al // Coatings. – 2021. – T. 11. – № 2. – R. 141. https://doi.org/10.3390 /coatings11020141. (In English).

13. Microstructural characterization and abrasive wear performance of HVOF sprayed Cr3C2–NiCr coating / G.C. Ji et al // Surface and Coatings Technology. – 2006. – T. 200, № 24. – R. 6749-6757. https://doi.org/10.1016/j.surfcoat.2005.10.005. (In English).

14. Kolisnichenko O.V. Ehffektivnost' protsessa napyleniya pokrytii s ispol'zovaniem mnogokamernogo detonatsionnogo ustroistva / O.V. Kolisnichenko, YU.N. Tyurin, R. Tovbin // Avtomaticheskaya svarka. – 2017. (In Russian).

15. Tyurin YU.N., Zhadkevich M.L. Plazmennye uprochnyayushchie tekhnologii / YU.N. Tyurin, M.L. Zhadkevich // Naukova dumka, Kiev. – 2008. – 218 s. (In Russian).

16. Protsessy zalechivaniya mikrotreshchin v metalle pod deistviem impul'sov toka vysokoi plotnosti / K.V. Kukudzhanov i dr. // Problemy prochnosti i plastichnosti. – 2016. – T. 78, № 3. – S. 300-310. https://doi.org/10.32326/1814-9146-2016-78-3-300-310. (In Russian).

Информация о финансировании

Данное исследование финансировалось Комитетом науки Министерства науки и высшего образования Республики Казахстан (грант №BR24992870).

Д.Н. Кәкімжанов*, М.К. Даутбеков, Е.С. Тұрабеков, Р.М. Қуанышбай, А.С. Рүстемов Plasma Science ЖШС, 070018, Қазақстан, Өскемен қаласы,Гоголь көшесі 7Г, *e-mail: dauir_97@mail.ru

ИМПУЛЬСТІ-ПЛАЗМАЛЫҚ ӨҢДЕУ ҚАШЫҚТЫҒЫНЫҢ ӨЗГЕРУІНІҢ СR₃C₂-NICR ДЕТОНАЦИЯЛЫҚ ЖАБЫНДАРЫНЫҢ ҚАСИЕТТЕРІНЕ ӘСЕРІ

Өнімнің өнімділік қасиеттерін арттыру және қызмет ету мерзімін арттырудың ең перспективалы әдістерінің бірі әртүрлі бүрку технологияларын қолдана отырып, функционалды жабындарды қолдану болып табылады. Cr₃C₂-NiCr металл-керамикалық композицияның тозуға және коррозияға жоғары төзімділігін ескере отырып, мұндай жабындар қалдықтарды жағуға арналған қазандықтардың ыстық бөліктеріндегі болат элементтерін қорғау үшін белсенді түрде қолданыла бастады, сонымен қатар электр пештері мен жұмыс істеп тұрған жабдықтарда. табиғи газ бойынша. Бұл зерттеу импульсті-плазмалық өңдеудегі қашықтықтың Cr₃C₂-NiCr детонациялық жабындарының беткі қабатының құрылымдық сипаттамаларына әсерін қарастырады. Біз детонациялық құрылғыны қолдана отырып, осындай жабындарды колдануды, содан кейін оларды импульстік-плазмалық әдіспен өңдеуді қамтитын процесті зерттейміз. Нәтижелер көрсеткендей, мұндай өңдеүден кейін жабындардың құрылымдық компоненттері балқып, тегістеледі, бұл олардың плазмалық импульстардың әсерінен жойылуына әкелмейді. Жабындардың микроқұрылымы Сг₃С₂-NiCr негізіндегі балқытылған металл керамикалық материал болып табылады. Импульстіплазмалық өңдеуден кейін бетінде Cr₂O₃ хром оксидінің фазалары анықталды, Cr₃C₂ шыңдарының каркындылығы артып, жаңа Сг₃С₂ рефлекстері пайда болды, бұл Сг₃С₂ фазасының жоғарылауын көрсетеді. Сондай-ақ, бұл өңдеуден кейін микроқұрылым біркелкі болып, Cr₃C₂-NiCr негізіндегі детонациялық жабынның тығыздалуына әкелетіні байқалды.

Түйін сөздер: Металл-керамикалық жабындар, детонациялық бүрку, импульсті-плазмалық өңдеу, жабынды өзгерту, қаттылық, тозуға төзімділік.

D.N. Kakimzhanov*, M.K. Dautbekov, E.S. Turabekov, R.M. Quanyshbay, A.S. Rustemov

Plasma Science LLP, 070018, Kazakhstan, Ust-Kamenogorsk, Gogol Street 7g, *e-mail: dauir 97@mail.ru

EFFECT OF VARYING THE PULSE-PLASMA TREATMENT DISTANCE ON THE PROPERTIES OF CR₃C₂-NICR DETONATION COATINGS

One of the most promising methods to improve the operational properties and increase the service life of products is the application of functional coatings using various sputtering technologies. Considering the high resistance to wear and corrosion of Cr_3C_2 -NiCr metal-ceramic composition, such coatings have started to be actively used to protect steel elements in hot parts of boilers designed for waste incineration, as well as in electric furnaces and equipment operating on natural gas. This study examines the effect of pulse-plasma treatment distance on the structural characteristics of the surface layer of Cr_3C_2 -NiCr detonation coatings. We study a process involving the deposition of such coatings using a detonation device and then their treatment by pulse plasma. The results show that after such treatment, melting and levelling of the structural components of the coatings occurs without leading to their destruction by the plasma pulses. The microstructure of the coatings is a molten Cr_3C_2 -NiCr based metal-ceramic material. After pulse plasma treatment, Cr_2O_3 chromium oxide phases are found on the surface, the intensity of Cr_3C_2 peaks increases and new Cr_3C_2 reflections appear, indicating an increase in the Cr_3C_2 phase content. It is also observed that the microstructure becomes more homogeneous after this treatment, which leads to the densification of the Cr_3C_2 -NiCr-based detonation coating.

Key words: Ceramic metal coatings, detonation spraying, pulse-plasma treatment, coating modification, hardness, wear resistance.

Сведения об авторах

Дауир Нуржанулы Какимжанов^{*} – PhD, ассоциированный профессор, директор научнопроизводственной компании «Plasma Scince», Усть-Каменогорск, Казахстан; e-mail: dauir_97@mail.ru. ORCID: https://orcid.org/0000-0001-9453-0456.

Мерхат Курметович Даутбеков – PhD, ассоциированный профессор, руководитель производственного центра «Bolat», Усть-Каменогорск, Казахстан; e-mail: merkhatd@gmail.com. ORCID: https://orcid.org/0000-0003-0203-6050.

Ернар Серикжанулы Турабеков – инженер научно-производственной компании «Plasma Scince», Усть-Каменогорск, Казахстан; e-mail: ernarturabekov28@gmail.com.

Рашид Маратулы Куанышбай – инженер научно-производственной компании «Plasma Scince», Усть-Каменогорск, Казахстан; e-mail: rashidmaratly08@gmail.com.

Ануар Саятбекулы Рустемов – инженер научно-производственной компании «Plasma Scince», Усть-Каменогорск, Казахстан; e-mail: anuarrustemovv05@gmail.com.

Авторлар туралы мәліметтер

Дәуір Нұржанұлы Кәкімжанов^{*} – PhD, қауымдастырылған профессор, «Plasma Scince» ғылыми-өндірістік компаниясының директоры, Өскемен, Қазақстан; e-mail: dauir_97@mail.ru. ORCID: https://orcid.org/0000-0001-9453-0456.

Мерхат Курметович Даутбеков – PhD, қауымдастырылған профессор, «Bolat» өндірістік орталығының басшысы, Өскемен, Қазақстан; e-mail: merkhatd@gmail.com. ORCID: https://orcid.org/0000-0003-0203-6050.

Ернар Серікжанұлы Тұрабеков – инженер научно-производственной компании «Plasma Scince», Усть-Каменогорск, Казахстан; e-mail: ernarturabekov28@gmail.com.

Рашид Маратұлы Қуанышбай – инженер научно-производственной компании «PlasmaScince», Усть-Каменогорск, Казахстан; e-mail: rashidmaratly08@gmail.com.

Ануар Саятбекулы Рүстемов – инженер научно–производственной компании «Plasma Scince», Усть-Каменогорск, Казахстан; e-mail: anuarrustemovv05@gmail.com.

Information about the authors

Dauir Nurzhanuly Kakimzhanov^{*}– PhD, Associate Professor, Director of the scientific and production company PlasmaScince, Ust-Kamenogorsk, Kazakhstan; e-mail: dauir_97@mail.ru. ORCID: https://orcid.org/0000-0001-9453-0456.

Merkhat Kurmetovich Dautbekov – PhD, Associate Professor, Head of the Bolat Production Center, Ust-Kamenogorsk, Kazakhstan; e-mail: merkhatd@gmail.com ORCID: https://orcid.org/0000-0003-0203-6050.

Ernar Serikzhanuly Turabekov – engineer of the scientific and production company «Plasma Scince», Ust-Kamenogorsk, Kazakhstan; e-mail: ernarturabekov28@gmail.com.

Rashid Maratuly Kuanyshbay – engineer of the scientific and production company «Plasma Scince», Ust-Kamenogorsk, Kazakhstan; e-mail: rashidmaratly08@gmail.com.

Anuar Sayatbekuly Rustemov – engineer of the scientific and production company "PlasmaScince", Ust-Kamenogorsk, Kazakhstan; e-mail: anuarrustemovv05@gmail.com.

Поступила в редакцию 11.10.2024 Поступила после доработки 10.12.2024 Принята к публикации 12.12.2024

https://doi.org/10.53360/2788-7995-2024-4(16)-41

МРНТИ: 81.09.00.

Ж.Б. Сагдолдина^{1,2}, Д.Р. Байжан^{1,2}*.

¹Восточно-Казахстанский университет имени С. Аманжолова, 070002, Республика Казахстан, г. Усть-Каменогорск, пр. Шакарима 148 ²Университет имени Шакарима города Семей, 071412, Республика Казахстан, г. Семей, ул. Глинки, 20 А *e-mail: daryn.baizhan@mail.ru

ИССЛЕДОВАНИЕ СТРУКТУРЫ ДЕТОНАЦИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ КАЛЬЦИЙ-ФОСФАТНЫХ СОЕДИНЕНИЙ

Аннотация: Процесс остеоинтеграции в значительной степени зависит от шероховатости поверхности, структуры, химического состава и механических характеристик покрытия. В связи с этим важным направлением в развитии медицинских материалов является разработка новых технологий модификации поверхности и создания биоактивных керамических покрытий. Кальций-фосфатные материалы на основе гидроксиапатита предлагаются в качестве биоактивных керамических покрытий на титановых имплантатах для эффективного ускорения заживления костной ткани. В статье рассмотрены результаты исследования процесса формирования

