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SOIL YIELD FORECASTING

Abstract: This research project serves as a comprehensive meta-analysis in the field of
agricultural science, specifically focusing on the prediction of crop yields. This endeavor involves
collating and synthesizing findings from a variety of studies and articles that have explored different
methodologies and models for forecasting agricultural outputs. The objective of this comprehensive
review is to identify trends, methodologies, and key factors that consistently influence crop yield
predictions across different studies.

It synthesizes methodologies from various studies, emphasizing machine learning (ML)
techniques like Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural
Networks (CNN). These studies integrate high-resolution satellite imagery with environmental
indices such as NDVI, EVI, and LAI. Soil chemical properties (pH, nutrients) and satellite-derived
data were used to enhance the prediction of crop yields for diverse crops. The findings highlight the
comparative effectiveness of different models in handling the spatial and temporal variability of both
above-ground and below-ground data, improving prediction accuracy under varying environmental
and soil conditions.

Through this theoretical analysis, the research underscores the potential of advanced
analytical models to transform agricultural monitoring and prediction, providing critical insights that
can aid in the optimization of agricultural policies and resource management.

Key words: Crop Yield Prediction, Satellite Imagery, Machine Learning, Convolutional
Neural Networks (CNN), Vegetation Indices, Soil Chemical Properties.

Introduction

Accurate crop yield prediction is essential for enhancing agricultural productivity and ensuring
food security. Advances in technology have significantly improved these predictions, helping
manage environmental risks and optimize resources.

Traditional methods of yield prediction, relying on historical data and simple empirical models,
often struggle to capture the complexity of modern agricultural ecosystems. Factors like
unpredictable weather, soil variability, and crop management practices add challenges that these
models cannot address. The integration of high-resolution satellite imagery and vegetation indices
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like NDVI and EVI has transformed crop monitoring, offering detailed insights into plant health and
biomass [1, 2].

Additionally, machine learning techniques — such as Random Forests, Support Vector
Machines, and deep learning models like Convolutional Neural Networks (CNNs) — have significantly
enhanced prediction accuracy by analyzing large, complex datasets [3-6]. These models leverage
both spatial and temporal data, revealing patterns that traditional approaches often miss.

While remote sensing and machine learning have improved above-ground crop monitoring,
the integration of soil chemical properties — such as pH, nutrient content, and organic matter — into
predictive models has proven essential for better accuracy. Soil health directly affects plant growth,
and models that combine satellite data with detailed soil profiles offer more precise yield predictions
[7]. This comprehensive approach not only enhances short-term accuracy but also aids in the
sustainable management of soil resources for long-term agricultural productivity.

The fusion of advanced computational techniques and detailed environmental data marks a
pivotal shift in agricultural forecasting, paving the way for more reliable and sustainable crop yield
predictions.

Literature Review

In recent years, machine learning methods have become essential tools in agriculture,
especially for predicting crop yields. Various studies have introduced approaches that leverage
satellite imagery, soil chemical properties, and deep learning models, but each method faces
limitations related to data types and computational resources.

One of the most commonly used approaches involves satellite imagery and deep learning,
such as Convolutional Neural Networks (CNN). For instance, in a study utilizing CNN, Landsat 8
satellite data was employed to predict yields for cabbage and radish [6]. This approach performs
well with spatial data, allowing the model to incorporate vegetation indices like NDVI and GDVI.
However, a reliance on surface data alone leads to the omission of critical below-ground factors
influencing crop yields. Soil chemical properties, such as nutrient levels and acidity, are essential in
yield prediction but were not included in the model, causing inaccuracies, particularly in situations
where soil composition plays a significant role [6].

To address these gaps, some researchers incorporated soil chemical properties into their
models. For example, one study used a OLS regression model to analyze the impact of soil
properties on rice yield [1]. However, while OLS regression can effectively reveal relationships
between soil properties and yield, its limitation lies in capturing the nonlinear dependencies and
interactions that often exist among environmental variables. This restricts the model's applicability
to more complex, dynamic environments where soil, weather, and plant responses interact in
nonlinear ways.

To enhance these predictive models, recent studies have turned to more advanced machine
learning algorithms, such as Random Forest (RF) and Support Vector Machines (SVM), which
handle nonlinear relationships better than OLS regression. Furthermore, machine learning models
like RF, ERT, DL, SVM and CNN require substantial computational power and high-quality data,
which can be restrictive in resource-constrained settings. Moreover, there is a problem with
overfitting and also certain problems with data dependence.

Each approach thus has unique strengths and limitations: CNNs effectively process satellite
images but require significant resources and overlook underground factors; OLS regression yield
accurate results but face scalability limitations; and RF, ERT, DL, SVM achieves high clustering
accuracy but demands labor-intensive parameter tuning and avoiding overfitting. This research aims
to integrate the strengths of each method to create a hybrid model, addressing their respective
limitations and enabling a more comprehensive model that considers essential factors and
overcomes data and resource constraints.

Data and Method

Methods

Data Collection and Preparation

The data used in this study encompassed satellite imagery, soil chemical properties, and
additional climate and topsoil information. Satellite images were sourced from high-resolution
Landsat 8, focusing on vegetation indices such as NDVI (Normalized Difference Vegetation Index),
EVI (Enhanced Vegetation Index), and LAI (Leaf Area Index), which indicate plant health, density,
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and overall crop condition. Soil chemical data, including organic matter, phosphorus (P), potassium
(K), calcium (Ca), magnesium (Mg), and silicon dioxide (SiO, ), were gathered to assess the
influence of soil composition on yield predictions over several years.

Preprocessing involved standardizing satellite images to maintain consistency across spatial
and temporal dimensions. Soil data were cleaned, scaled, and interpolated for compatibility with
satellite data resolution, ensuring a cohesive dataset for model integration. For statistical analyses,
explanatory and response variables were normalized using z-scores, facilitating direct comparison
across variables of different scales.

Statistical Modeling

The Ordinary Least Squares (OLS) regression model served as a benchmark for predicting
crop yields, structured to minimize residuals in the regression equation:

y=B0 +B1 x1 +B2 x2 +...+Li xi +€ Here, y denotes the response variable, x1 to xi are the
explanatory variables, B0 is the intercept, 81 to Bi represent the slopes correlating the response
variable (y) with the explanatory variables (x1 to xi ), and € is the error term.

In one analysis, corn and soybean yields were modeled using fourteen variables, including
vegetation indices (NDVI, EVI, LAI), climate factors (precipitation, Tmin, Tmax, Tmean), topsoil and
subsoil properties (e.g., clay fraction, bulk density, pH, calcium carbonate, exchangeable sodium,
and electrical conductivity), and nitrogen fertilizer inputs [1].

Correlation coefficients were calculated to assess the relationships between the variables
and the response, guiding the selection of relevant explanatory variables. Redundancies were further
identified using the Variation Inflation Factor (VIF) to avoid multicollinearity.

VIF(z;) = ﬁ
(Picture 1 — VIF formula)

Where Rj2 is the R-squared value from regressing Xj against the other explanatory variables.
A VIF exceeding 10 indicates significant multicollinearity, leading to the exclusion of variables such
as EVI, Tmax, Tmean, and CaCO3. The final model included ten variables: NDVI, LAI, precipitation,
Tmin, clay content, bulk density, pH, exchangeable sodium percentage (ESP), electrical conductivity
(ECE), and nitrogen fertilizer (NTRG).

To standardize comparisons across variables, z-scores were used to normalize both the
response and explanatory variables:

! (4 L)
z-
(Picture 2 — z-scores formula)

Machine Learning Models

The process of setting up models involves a structured series of steps aimed at capturing the
complexities of agricultural environments. First, it is essential to define the prediction objective,
specifying the crop type, geographical scope, and temporal range of the analysis. For example,
studies targeting corn yield prediction in lowa structured their models around the entire growing
season, May to September, while research on cabbage and radish in Gangwon-do, South Korea,
focused on data from June to September to align with local agricultural cycles. Clearly defining these
parameters helps ensure that the data inputs and model configurations align with the biological
growth stages of the crops under study [2, 6].

The data preprocessing stage is critical for preparing the satellite and climate data to ensure
consistency, cleanliness, and structure compatible with machine learning models. The first task
involves data filtering to isolate relevant cropland or specific crop type. This filtering process may
use land cover classification maps to extract only the areas designated for the crops of interest, such
as corn fields or vegetable plots, thus minimizing noise from irrelevant regions. Next, temporal
grouping segments the data into meaningful periods that correspond with the crops’ growth stages,
enhancing the model’s sensitivity to phenological phases. Grouping data by growth stages or specific
seasonal windows, such as monthly or bi-monthly intervals, allows the model to capture variations
in crop development during critical periods. For instance, the data may be organized as the entire
growing season (e.g., May to September) or as discrete monthly intervals, depending on crop
sensitivity to environmental conditions. Additionally, data normalization and scaling are applied to
ensure consistency across different data sources, which reduces bias and improves compatibility
between vegetation indices and climate variables. Normalization techniques like Z-score
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standardization or min-max scaling are especially important for deep learning architectures that
require well-scaled input for effective learning.

Model selection and configuration depend on the characteristics of the data and the specific
objectives of the prediction task. Random Forest (RF) models are frequently used for structured
agricultural data, as they leverage ensembles of decision trees to capture complex interactions within
the dataset. Support Vector Machine (SVM) models are beneficial for datasets with clear class
separability, though they require careful tuning of kernel functions, such as linear or Gaussian, to fit
the data's structure. Deep learning approaches, particularly Convolutional Neural Networks (CNNSs),
are increasingly applied in agriculture due to their ability to process spatially structured data from
satellite images.

Support Vector Machine (SVM)

SVM is widely used for its accuracy in classification and predictive tasks. The model identifies
an optimal hyperplane that maximizes the margin between support vectors from different classes,
reducing errors. A Gaussian RBF kernel was used in this study to capture nonlinear patterns. The
optimization process involved tuning kernel parameters and regularization constants to balance
accuracy with computational efficiency, as SVM is sensitive to overfitting when parameters are not
optimized [10]:

miny, % [|w

subjecttoy;(w - x; +b) = 1fori = 1,...,n, where:

(Picture 3 — SVM optimization equation)

Random Forest (RF)

RF, based on the CART algorithm, leverages ensemble learning by combining multiple
decision trees using bootstrap aggregation. This method builds decision trees from random subsets
of the training data, with final predictions determined by majority voting (classification) or averaging
(regression). In this study, RF was configured with 500 trees, splitting nodes based on a third of the
total input variables (n/3). The model’s performance was evaluated using out-of-bag error as a
metric, providing an unbiased estimation of prediction accuracy [2]:

Yy =1%1v

L 2l
(Picture 4 — Averaging equation)

This experimental configuration included 500 trees, with the splitting variables set to a third
of the total input variables (n/3). In the research also utilized the out-of-bag error as a performance
metric [2].

Extremely Randomized Trees (ERT)

ERT is a variant of RF that builds trees without bootstrap resampling and selects split points
randomly, which enhances diversity among trees. This approach reduces model bias and enhances
generalization but increases variance. The settings for ERT, such as the number of trees and node
splitting variables, were aligned with RF for direct performance comparison [2]. The ERT model
demonstrated greater flexibility in handling noisy data, which is common in large agricultural

datasets.:
- M _
Y= % Em—J_ Tf” (‘L)

(Picture 5 — Ensemble prediction formula)

Deep Learning (DL)

DL expands traditional artificial neural networks (ANN) with multi-layer architectures,
effectively managing large, complex datasets. The training process involves unsupervised pre-
training to refine representations, followed by supervised fine-tuning to optimize classification
performance. In this study, a deep learning model with a 200x200 configuration was utilized,
undergoing pre-training and fine-tuning to capture high-dimensional patterns within the agricultural
data [3].

Convolutional Neural Network (CNN)

CNNs are particularly well-suited for analyzing visual data such as satellite imagery, making
them ideal for capturing spatial and temporal patterns related to crop health. The CNN model in this
study analyzed time-series satellite data, automatically extracting features without manual
engineering. ReLU activation and Adam optimization were used, and a dropout rate of 0.5 was
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applied across all layers to prevent overfitting. The model input was organized as histograms, with
11 variables represented in 32-bin formats for each district, allowing the CNN to learn subtle spatial
correlations between satellite imagery and crop yields [5].

Result and Discussion

In the study, various machine learning models, including SVM, Random Forest (RF),
Extremely Randomized Trees (ERT), and Deep Learning (DL), were used to predict corn yields,
benchmarked against USDA statistics. The dataset, spanning the MJJAS growing season, was
validated using the leave-one-year-out cross-validation method, generating 11 sets of results (2004-
2014). The DL model achieved the highest correlation (0.776) with an RMSE of 0.844 ton/ha, while
RF and ERT demonstrated comparable accuracy (correlation coefficients of 0.651 and 0.654,
respectively). SVM had the lowest performance with a correlation of 0.590 and an RMSE of 0.959
ton/ha.

RF and ERT performed well across different seasonal periods, capturing the seasonal
sensitivities of corn yields. DL outperformed across all periods (MJJAS=0.776), while RF and ERT
also showed robust performance. SVM was more prone to overfitting, a common issue in complex
models, where minor dataset fluctuations impacted performance.

Table 1 — Validation statistics for the period groups MJJAS

Mean bias MAE RMSE MAPE
(ton/ha) (ton/ha) (ton/ha) (%)
SVM 0.112 0.730 0.959 8.1 0.590
RF 0.063 0.666 0.879 7.3 0.651
ERT 0.091 0.674 0.891 7.4 0.654
DL -0.031 0.657 0.844 6.9 0.776

In a separate analysis using OLS regression, climate variables and soil properties were
assessed for their influence on corn and soybean yields. NDVI had the most significant influence on
yields for both crops, with precipitation (PPT) and minimum temperature (Tmin) playing important
roles for corn and soybeans, respectively. The study highlighted how soil texture and nitrogen
fertilizer (NTRG) also contributed to crop performance, emphasizing the need for further analysis on
how irrigation practices interact with soil properties.

Validation results for 2011-2012 showed reasonable error metrics (MAE of 0.726 ton/ha for
corn in 2011 and 1.046 ton/ha in 2012). Prediction errors increased in 2012 due to drought
conditions, impacting model performance. However, correlation coefficients remained high (0.909
for corn in 2011 and 0.903 for soybeans).

The proposed CNN model demonstrated strong predictive capabilities for cabbage and
radish yields in temperate, seasonally variable climates, achieving high correlation values (up to
0.7046 for radish and 0.6350 for cabbage) and relatively low RMSE (1,358 to 1,553), thereby
highlighting its ability to capture complex, spatiotemporal data patterns. Despite these strengths, the
model exhibited limitations during early prediction stages and under extreme climate conditions, such
as the 2018 heatwave, where it overestimated yields, suggesting a need for architectural adaptations
or additional weather-related variables to enhance robustness.

Table 2 — Validation results of the regression models (OLS) for corn and soybean yields
across different years, including metrics such as mean bias, MAE, RMSE, MAPE

No. of Counties | Min Obs. | Max Obs. | Mean Obs. | Mean Bias | MAE | RMSE | MAPE R
(ton/ha) (ton/ha) | (ton/ha) (ton/ha) (ton/ha) | (ton/ha) | (ton/ha) | (%)
Corn (2011) 180 4.871 12.334 9.456 -0.350 0.726 0.861 8.144 | 0.909
Corn (2012) 182 1.883 12.208 8.463 -0.675 1.046 1.240 | 12.681 | 0.854
Soybeans (2011) 181 1.715 4.304 2.871 -0.093 0.252 0.313 8.812 | 0.903
Soybeans (2012) 177 0.780 3.766 2.762 -0.347 0.392 0442 | 14.616 | 0.877

The study emphasizes the importance of selecting stable regions to minimize the impact of

unpredictable factors like natural disasters on yield predictions. Machine learning models such as
RF, ERT, and DL demonstrate strong potential for improving agricultural productivity and food
security through precision agriculture. Comprehensive evaluations, including metrics like MAE,
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RMSE, and R-squared, along with visualizations like scatter plots and residual analysis, provide a
thorough understanding of model performance.

Through a comparative evaluation of models, including CNNs, RF, ERT, SVM, and Ordinary
Least Squares (OLS) regression, this review identifies specific advantages under varying agricultural
conditions. CNNs perform effectively in large-scale spatial analysis using satellite imagery, while
neural networks based on soil properties offer superior accuracy in areas where soil chemistry
significantly impacts yield.

Table 3 — 8:2 validation results for radish and cabbage using the proposed CNN model,
reference CNN model (Mu et al., 2019), and Random Forest

(a) Proposed model (b) Reference model (Mu et al., 2019) (c) Random forest
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Fig. 5. 8:2 validation results for cabbage: (a) proposed CNN model result, (b) reference CNN model (Mu et al., 2019)
result, and (¢) RF model result.

Random Forest and ERT models provide robustness in heterogeneous environments with
diverse soil types and climates, making them ideal for multi-crop or variable conditions. In
homogeneous or monoculture systems, OLS regression and SVM offer simplicity and effectiveness,
particularly under stable climatic patterns. The integration of multiple data sources — satellite
imagery, soil properties, and climate metrics — further enhances model accuracy, enabling tailored
adaptations across crops and regions.

Table 4 — Summarized results in the table

Model Crop Climate Key Metrics r MAE RMSE MAPE Strengths
Zones
oLs Com, Temperate Moderate accuracy. 0.854 - 0.252 0.313 8.144% - Simple and
Regression Soybeans and Stable higher error margin for 0.908 - 1.046 - 1.240 14.616% interpretable. suitable
complex patterns for stable environments
Support Vector Comn Temperate Lower accuracy in 0.575 - 0.650 0.852 7.3% - Effective for simple
Machine (SVM) extreme conditions; 0.606 -0.730 - 0.958 8.1% patterns; struggles in
performs better in highly varable climate
moderately stable zones
climates
Random Com Temperate High correlation in 0.651 - 0.616 0.767 6.3% - Handles non-linear
Forest (RF) with Seasonal optimal month 0.774 - 0.666 - 0.879 7.3% patterns well, reduced
Wariation combinations, overfitting compared to
effective for seasonal simpler models
sensitivity
Extremely Com Temperate Similar performance to 0.654 - 0.568 0.756 6.1% - Highly efficient, suitable
Randomized with Seasonal RF with slight variance 0.785 - 0.674 - 0.891 7.4% for large datasets with
Trees (ERT) Variation reduction complex pattemns
Deep Learning Com Temperate High accuracy, 0.776 - 0.608 0.787 6.5% - Best for complex, non-
(DL) and Drought- especially in drought- 0.800 -0.709 - 0.901 7.5% linear relationships,
Prone resistant predictions, adaptable to both
handles overfitting stable and extreme
effectively conditions
CNN Cabbage. Temperate. High prediction 0.635 - A 1.358 NEA Effective for handling
Radish Seasonal accuracy, performs 0.7046 - 1.553 spatiotemporal data,
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Conclusion

This comprehensive meta-analysis underscores the transformative impact of integrating
advanced machine learning techniques with high-resolution satellite imagery and soil chemical
properties for crop yield prediction. By synthesizing methodologies across various studies, this
research highlights how models like Convolutional Neural Networks (CNNs), Random Forests (RF),
Extremely Randomized Trees (ERT), Support Vector Machines (SVM), and Ordinary Least Squares
(OLS) regression each offer unique advantages in handling the complexities of modern agricultural
ecosystems.

CNNs demonstrated superior predictive accuracy for crops like radish under stable
environmental conditions, leveraging their ability to automatically extract features from high-
dimensional data. Random Forests and ERT models exhibited robustness in heterogeneous
environments with diverse soil types and climatic variables, making them well-suited for multi-crop
systems and regions with variable conditions. These ensemble methods effectively handled
nonlinear relationships and reduced overfitting risks, contributing to reliable yield predictions.

In contrast, SVMs and OLS regression models offered simplicity and computational
efficiency, performing effectively in homogeneous or monoculture systems with stable climatic
patterns.

A critical insight from this research is the significant enhancement of prediction accuracy
when integrating soil chemical properties — such as pH, nutrient content, and organic matter—with
satellite-derived vegetation indices. This comprehensive approach acknowledges the essential role
of below-ground factors in crop development, providing a more holistic understanding of the factors
influencing yields. The fusion of above-ground and below-ground data allows models to account for
the spatial and temporal variability inherent in agricultural environments.

The study also emphasizes the importance of selecting stable regions for yield prediction to
minimize the impact of unpredictable factors like natural disasters. By focusing on areas with
consistent environmental conditions, models can achieve higher accuracy, which is crucial for
informing agricultural policies and resource management strategies.

Through the comparative evaluation of different models, the research illustrates that no single
method universally outperforms others across all conditions. Instead, the choice of model should be
tailored to specific agricultural contexts, considering factors such as data availability, computational
resources, crop types, and environmental variability.
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NMPOrHO3MPOBAHUE YPOXXAUHOCTU NOYBbI

Oma uccnedosamenbckuli npoekm ripedcmasnsem coboli KOMMIeKCHbIU MemaaHanu3 8 obnacmu
CesIbCKOX03ALUCMBeHHOU HayKuU, 8 KOMopoM ocoboe 8HUMaHue ydesnsiemcs rnpoeHO3UPO8aHUI0 ypoxaluHocmu
CesIbCKOX03AUCMBEeHHbIX Kynbmyp. 3mo uccriedogaHue ekKivaem 8 cebsi corocmaesieHue U CuHmMe3
pesynbmamos pas/fiuyHbIX uccredogaHul U cmamel, 8 KOMOpbIX paccMampuearomcs pasfuyHble
memodornioauu U MOOEenU  MPO2HO3UPOBaHUSI  CeIbCKOoX03scmeeHHoU npodykyuu. Llenbto  3mozo
sceobbemmow,e2o o0b3opa sensgemcsi 8bisiefieHUe meHOeHyul, Memodonoaul U K4Yesbix ¢hakmopos,
Komopsbie nocredogamenibHO 8/USIOM Ha MPOEHO3bl YPOXalHOCMU Ce/IbCKOXO35UCMBEHHbIX Kyfbmyp 8
pamkax pasnuy4Hbix uccredosaHul.

B Hem 0606weHbl MmemoQdorioauu u3 pasfuyHbix uccrnedosaHul, ocoboe eHuMaHue ydensemcs
memodam mawuHHo20 obyyeHus (ML), makum kak memoOdbi 0riopHbix eekmopos (SVM), criyqaliHbeil nec (RF)
u ceepmoyHble HelipoHHble cemu (CNN). Omu uccredosaHuss 06beOUHSAIOM CryMHUKO8bIE CHUMKU 8bICOKO20
paspeweHuss ¢ aKoro2u4eckuMU nokasamensamu, makumu kak NDVI, EVI u LAl Xumu4yeckue ceolicmea
royskbl (pH, numamernbHble 8eujecmea) U MosyYeHHble CO CrymHuKka O0aHHble OblIu UCronb308aHbl Ons
yIyqWweHUs1 PO2HO3UPOBaHUsi  ypoXxalHoCmu  pasfuyHbiX  Kynbmyp. [lofyvyeHHble  pes3ynbmamesl
ceudemenibcmeylom 0O cpasHUmMernbHoU 3ghghekmusHocmU pasnuyHbix Moldenel npu obpabomke
rnpocmpaHcmMeeHHOU U 8PeMeHHOU U3MEH4YUBOCMU KaK Ha3eMHbIX, maK U M[003eMHbIX OaHHbIX, 4mo
ro8biwaem mMo4YHOCMb MPO2HO3UPOBAHUS 8 Pa3/iUYHbIX YCI108USX OKpyxatoweli cpedbl U r104asbl.

bnazodapss amomy meopemuyeckoMmy aHanusy uccrnedosaHue mnodyepkugaem romeHyuar
nepedosbix aHanumu4eckux modenel Ons npeobpaszosaHusi CEIbCKOX0351UCMBEHHO20 MOHUMOPUH2a U
rpo2Ho3Upo8aHusi, rnpedocmasrsiss 8axHylo UHhopmayuto, Komopas MOoXem [oMOYb 8 onmumu3ayuu
CeribCKoXo3AlcmeeHHOU nMonumMuKU U yrnpasieHuu pecypcamu.

Knroyesblie cnoea: [IpozHo3uposaHue ypoxaliHOCMU  Ce/lbCKOXO3[UCMEEHHbIX  Kyfbmyp,
CniymHukoeble cHUMKU, MawuHHoe obydeHue, CeepmoyHble HelipoHHble cemu (CNN), BezemauuoHHble
UHOeKchbl, Xumu4yeckue ceolicmea rnoyesi.
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TONbIPAK ©HIMANITH BOJTXKAY

by sepmmey xobacskl aybin wapyauwblibifbl fblfbIMbI canacbiHOarbl KeweHOi Mema-aHanus pemiHoe
Kbismem emedi, aman aumkaHOa OakbliOapObiH eHiMmOinieiH 6ormkayra barbimmarnraH. byn epekem aybin
wapyauwblinbifbiHbIH 6HiMOinieiH 6ormkayObiH apmypsi adicmemernepi MeH yneinepiH sepmmeaeH apmyprii
3epmmeyrnep MeH MaKkananapObliH HOMUXEePiH canbicmbipyobl xoHe cuHme3deydi kammuodbl. by xaH-
JKaKmbl wornydbiH Makcamel apmypsii sepmmeynepdeai 0akbindapobiH eHimdinieiH bomkayra atiekmi mypde
acep ememiH meHOeHyusnapobi, adicmemenepdi xoHe Heezizai hakmopnapObl aHbiKmay 6011birn mabblnadsi.

On ©pmypni 3epmmeynepdiH adicmemernepiH cuHmesdelidi, Bekmopnbik MawuHanapdsl (SVM),
Kesodeticok OpmaHdapdbl (RF) XXeHne Koneonouusnbik HelipoHOsik XKeninepdi (CNN) Konday cusikmsi
mawuHanslk  okeimy (ML) adicmepiHe 6aca Hasap aydapadbl. byn 3epmmeynep Xorfapbl
axblpambiMObinbiKmarbl  criymHuUkmik - cypemmepdi NDVI, EVI xeHe LAl cusskmbl 3KOI02USMbIK
KepcemkiwumepmeH 6ipikmipedi. TornbipakmblH XUMUSTbIK Kacuemmepi (pH, KOPeKmiKk 3ammap) XoHe
crnymHukmik Oepekmep apmypsi OakblndapObiH eHimOinigiH 6osmkayObl xakcapmy ywiH natdanaHbiniobl.
Hamuxxenep apmypi modenbdepdiH XXep ycmi xaHe Xep acmbi 0epeKkmepiHiH KeHICMIKMIK XoHe yaKblmmbIK
e3zepeiwmieiH eHOeydeei canbicmbipmarnsbl muimdinieiH kepcemedi, KopwaraH opma MeH MOorbIPaKmMbiH
apmypri xardalnapbiH0a 6ommkay 0andieiH xakcapmadsbl.

Ocbl meopusinblKk manday apkbifibl 3epmmey ayblil Wwapyauwbibifbl cascambiH OHmMalnaHObIpyFa
)XOHe pecypcmapdbl backapyra KeMekmecemiH MaHbI30bl aknapammbl YCblHA OMbIPbIN, aybisl
wapyalblibifbl MOHUMOPUH2I MeH bormkaMblH 632epmy YWiH 03bIK aHarnumukarbik Modenb0epdiH aneyemiH
kepcemeoi.
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Tyiiin ce30ep: [akbindapdbiH ©HimOiniaiH bomkay, CrnymHukmik Cypemmep, MawuHanbik OKkbimy,
Kowneontoyusineik HelipoHObIK XKeninep( CNN), Ocim0Oik )XambinroicbiHbiH Kepcemkiwmepi, TonbipakmbiH
Xumusinbeik Kacuemmepi.
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DEVELOPMENT OF A COMPREHENSIVE SOFTWARE SOLUTION FOR PROCESSING
HIGH-SULFUR, COPPER-POOR CONCENTRATES IN THE COPPER SMELTING INDUSTRY

Abstract: The depletion of high-grade copper ores and the increasing prevalence of low-
grade, high-sulfur copper concentrates present significant challenges to the copper smelting
industry. Traditional smelting processes struggle to maintain economic viability and comply with
environmental regulations when processing these complex ores. This paper details the development
of a comprehensive software solution designed to simulate the smelting process for high-sulfur,
copper-poor concentrates. The software employs a detailed mathematical model to predict the yields
and compositions of products, including valuable metals, during the smelting process. It integrates
multiple modules, such as ore input, smelting simulation, and results presentation, providing a user-
friendly platform for optimizing smelting operations. Critical parameters like ore composition,
smelting temperature, and flux addition are incorporated into the model, enabling accurate
predictions of matte and slag outputs. By analyzing these outputs, the software aids in optimizing
metal recovery and reducing losses, ultimately enhancing the efficiency and sustainability of copper
production. This tool is particularly relevant for large sulfide copper ore deposits, such as those in
Kazakhstan, which have high sulfur content and low copper levels. The software's ability to simulate
different processing scenarios provides valuable insights for industrial applications, supporting the
development of more efficient and eco-friendly smelting technologies. The comprehensive software
solution not only addresses the technical challenges of processing high-sulfur, low-copper ores but
also contributes to the industry's efforts to reduce environmental impact and improve resource
management. This innovation represents a significant step forward in the optimization of copper
smelting operations, promoting sustainability and efficiency in the face of declining ore quality.

Key words: copper smelting, high-sulfur ores, smelting simulation, metal recovery,
optimization.

Introduction
The copper smelting industry is transforming due to the depletion of high-grade ores and the
rise of complex, low-grade ores [1, 2]. These ores, high in sulfur and low in copper, challenge
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