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SOIL YIELD FORECASTING 
  

Abstract: This research project serves as a comprehensive meta-analysis in the field of 
agricultural science, specifically focusing on the prediction of crop yields. This endeavor involves 
collating and synthesizing findings from a variety of studies and articles that have explored different 
methodologies and models for forecasting agricultural outputs. The objective of this comprehensive 
review is to identify trends, methodologies, and key factors that consistently influence crop yield 
predictions across different studies. 

It synthesizes methodologies from various studies, emphasizing machine learning (ML) 
techniques like Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural 
Networks (CNN). These studies integrate high-resolution satellite imagery with environmental 
indices such as NDVI, EVI, and LAI. Soil chemical properties (pH, nutrients) and satellite-derived 
data were used to enhance the prediction of crop yields for diverse crops. The findings highlight the 
comparative effectiveness of different models in handling the spatial and temporal variability of both 
above-ground and below-ground data, improving prediction accuracy under varying environmental 
and soil conditions. 

Through this theoretical analysis, the research underscores the potential of advanced 
analytical models to transform agricultural monitoring and prediction, providing critical insights that 
can aid in the optimization of agricultural policies and resource management. 

Key words: Crop Yield Prediction, Satellite Imagery, Machine Learning, Convolutional 
Neural Networks (CNN), Vegetation Indices, Soil Chemical Properties. 
 

Introduction 
Accurate crop yield prediction is essential for enhancing agricultural productivity and ensuring 

food security. Advances in technology have significantly improved these predictions, helping 
manage environmental risks and optimize resources. 

Traditional methods of yield prediction, relying on historical data and simple empirical models, 
often struggle to capture the complexity of modern agricultural ecosystems. Factors like 
unpredictable weather, soil variability, and crop management practices add challenges that these 
models cannot address. The integration of high-resolution satellite imagery and vegetation indices 
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like NDVI and EVI has transformed crop monitoring, offering detailed insights into plant health and 
biomass [1, 2]. 

Additionally, machine learning techniques – such as Random Forests, Support Vector 
Machines, and deep learning models like Convolutional Neural Networks (CNNs) – have significantly 
enhanced prediction accuracy by analyzing large, complex datasets [3-6]. These models leverage 
both spatial and temporal data, revealing patterns that traditional approaches often miss. 

While remote sensing and machine learning have improved above-ground crop monitoring, 
the integration of soil chemical properties – such as pH, nutrient content, and organic matter – into 
predictive models has proven essential for better accuracy. Soil health directly affects plant growth, 
and models that combine satellite data with detailed soil profiles offer more precise yield predictions 
[7]. This comprehensive approach not only enhances short-term accuracy but also aids in the 
sustainable management of soil resources for long-term agricultural productivity. 

The fusion of advanced computational techniques and detailed environmental data marks a 
pivotal shift in agricultural forecasting, paving the way for more reliable and sustainable crop yield 
predictions. 

 
Literature Review 
In recent years, machine learning methods have become essential tools in agriculture, 

especially for predicting crop yields. Various studies have introduced approaches that leverage 
satellite imagery, soil chemical properties, and deep learning models, but each method faces 
limitations related to data types and computational resources. 

One of the most commonly used approaches involves satellite imagery and deep learning, 
such as Convolutional Neural Networks (CNN). For instance, in a study utilizing CNN, Landsat 8 
satellite data was employed to predict yields for cabbage and radish [6]. This approach performs 
well with spatial data, allowing the model to incorporate vegetation indices like NDVI and GDVI. 
However, a reliance on surface data alone leads to the omission of critical below-ground factors 
influencing crop yields. Soil chemical properties, such as nutrient levels and acidity, are essential in 
yield prediction but were not included in the model, causing inaccuracies, particularly in situations 
where soil composition plays a significant role [6].  

To address these gaps, some researchers incorporated soil chemical properties into their 
models. For example, one study used a OLS regression model to analyze the impact of soil 
properties on rice yield [1]. However, while OLS regression can effectively reveal relationships 
between soil properties and yield, its limitation lies in capturing the nonlinear dependencies and 
interactions that often exist among environmental variables. This restricts the model’s applicability 
to more complex, dynamic environments where soil, weather, and plant responses interact in 
nonlinear ways. 

To enhance these predictive models, recent studies have turned to more advanced machine 
learning algorithms, such as Random Forest (RF) and Support Vector Machines (SVM), which 
handle nonlinear relationships better than OLS regression. Furthermore, machine learning models 
like RF, ERT, DL, SVM and CNN require substantial computational power and high-quality data, 
which can be restrictive in resource-constrained settings. Moreover, there is a problem with 
overfitting and also certain problems with data dependence. 

Each approach thus has unique strengths and limitations: CNNs effectively process satellite 
images but require significant resources and overlook underground factors; OLS regression yield 
accurate results but face scalability limitations; and RF, ERT, DL, SVM achieves high clustering 
accuracy but demands labor-intensive parameter tuning and avoiding overfitting. This research aims 
to integrate the strengths of each method to create a hybrid model, addressing their respective 
limitations and enabling a more comprehensive model that considers essential factors and 
overcomes data and resource constraints. 

Data and Method 
Methods 
Data Collection and Preparation 
The data used in this study encompassed satellite imagery, soil chemical properties, and 

additional climate and topsoil information. Satellite images were sourced from high-resolution 
Landsat 8, focusing on vegetation indices such as NDVI (Normalized Difference Vegetation Index), 
EVI (Enhanced Vegetation Index), and LAI (Leaf Area Index), which indicate plant health, density, 
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and overall crop condition. Soil chemical data, including organic matter, phosphorus (P), potassium 
(K), calcium (Ca), magnesium (Mg), and silicon dioxide (SiO₂ ), were gathered to assess the 
influence of soil composition on yield predictions over several years. 

Preprocessing involved standardizing satellite images to maintain consistency across spatial 
and temporal dimensions. Soil data were cleaned, scaled, and interpolated for compatibility with 
satellite data resolution, ensuring a cohesive dataset for model integration. For statistical analyses, 
explanatory and response variables were normalized using z-scores, facilitating direct comparison 
across variables of different scales. 

Statistical Modeling 
The Ordinary Least Squares (OLS) regression model served as a benchmark for predicting 

crop yields, structured to minimize residuals in the regression equation: 
y=β0 +β1 x1 +β2 x2 +…+βi xi +ϵ Here, y denotes the response variable, x1  to xi  are the 

explanatory variables, β0  is the intercept, β1  to βi  represent the slopes correlating the response 
variable (y) with the explanatory variables (x1  to xi ), and ϵ is the error term. 

In one analysis, corn and soybean yields were modeled using fourteen variables, including 
vegetation indices (NDVI, EVI, LAI), climate factors (precipitation, Tmin, Tmax, Tmean), topsoil and 
subsoil properties (e.g., clay fraction, bulk density, pH, calcium carbonate, exchangeable sodium, 
and electrical conductivity), and nitrogen fertilizer inputs [1]. 

Correlation coefficients were calculated to assess the relationships between the variables 
and the response, guiding the selection of relevant explanatory variables. Redundancies were further 
identified using the Variation Inflation Factor (VIF) to avoid multicollinearity. 

 
(Picture 1 – VIF formula) 

Where Rj2 is the R-squared value from regressing xj against the other explanatory variables. 
A VIF exceeding 10 indicates significant multicollinearity, leading to the exclusion of variables such 
as EVI, Tmax, Tmean, and CaCO3. The final model included ten variables: NDVI, LAI, precipitation, 
Tmin, clay content, bulk density, pH, exchangeable sodium percentage (ESP), electrical conductivity 
(ECE), and nitrogen fertilizer (NTRG). 

To standardize comparisons across variables, z-scores were used to normalize both the 
response and explanatory variables: 

 
(Picture 2 – z-scores formula)  

Machine Learning Models 
The process of setting up models involves a structured series of steps aimed at capturing the 

complexities of agricultural environments. First, it is essential to define the prediction objective, 
specifying the crop type, geographical scope, and temporal range of the analysis. For example, 
studies targeting corn yield prediction in Iowa structured their models around the entire growing 
season, May to September, while research on cabbage and radish in Gangwon-do, South Korea, 
focused on data from June to September to align with local agricultural cycles. Clearly defining these 
parameters helps ensure that the data inputs and model configurations align with the biological 
growth stages of the crops under study [2, 6]. 

The data preprocessing stage is critical for preparing the satellite and climate data to ensure 
consistency, cleanliness, and structure compatible with machine learning models. The first task 
involves data filtering to isolate relevant cropland or specific crop type. This filtering process may 
use land cover classification maps to extract only the areas designated for the crops of interest, such 
as corn fields or vegetable plots, thus minimizing noise from irrelevant regions. Next, temporal 
grouping segments the data into meaningful periods that correspond with the crops’ growth stages, 
enhancing the model’s sensitivity to phenological phases. Grouping data by growth stages or specific 
seasonal windows, such as monthly or bi-monthly intervals, allows the model to capture variations 
in crop development during critical periods. For instance, the data may be organized as the entire 
growing season (e.g., May to September) or as discrete monthly intervals, depending on crop 
sensitivity to environmental conditions. Additionally, data normalization and scaling are applied to 
ensure consistency across different data sources, which reduces bias and improves compatibility 
between vegetation indices and climate variables. Normalization techniques like Z-score 



 
ISSN 2788-7995 (Print) 
ISSN 3006-0524 (Online) 

Вестник университета Шакарима. Технические науки № 4(16) 2024 

Bulletin of Shakarim University. Technical Sciences № 4(16) 2024 

75 

 

standardization or min-max scaling are especially important for deep learning architectures that 
require well-scaled input for effective learning. 

Model selection and configuration depend on the characteristics of the data and the specific 
objectives of the prediction task. Random Forest (RF) models are frequently used for structured 
agricultural data, as they leverage ensembles of decision trees to capture complex interactions within 
the dataset. Support Vector Machine (SVM) models are beneficial for datasets with clear class 
separability, though they require careful tuning of kernel functions, such as linear or Gaussian, to fit 
the data's structure. Deep learning approaches, particularly Convolutional Neural Networks (CNNs), 
are increasingly applied in agriculture due to their ability to process spatially structured data from 
satellite images. 

Support Vector Machine (SVM) 
SVM is widely used for its accuracy in classification and predictive tasks. The model identifies 

an optimal hyperplane that maximizes the margin between support vectors from different classes, 
reducing errors. A Gaussian RBF kernel was used in this study to capture nonlinear patterns. The 
optimization process involved tuning kernel parameters and regularization constants to balance 
accuracy with computational efficiency, as SVM is sensitive to overfitting when parameters are not 
optimized [10]:  

 
(Picture 3 – SVM optimization equation) 

Random Forest (RF) 
RF, based on the CART algorithm, leverages ensemble learning by combining multiple 

decision trees using bootstrap aggregation. This method builds decision trees from random subsets 
of the training data, with final predictions determined by majority voting (classification) or averaging 
(regression). In this study, RF was configured with 500 trees, splitting nodes based on a third of the 
total input variables (n/3). The model’s performance was evaluated using out-of-bag error as a 
metric, providing an unbiased estimation of prediction accuracy [2]: 

 
(Picture 4 – Averaging equation) 

This experimental configuration included 500 trees, with the splitting variables set to a third 
of the total input variables (n/3). In the research also utilized the out-of-bag error as a performance 
metric [2]. 

Extremely Randomized Trees (ERT) 
ERT is a variant of RF that builds trees without bootstrap resampling and selects split points 

randomly, which enhances diversity among trees. This approach reduces model bias and enhances 
generalization but increases variance. The settings for ERT, such as the number of trees and node 
splitting variables, were aligned with RF for direct performance comparison [2]. The ERT model 
demonstrated greater flexibility in handling noisy data, which is common in large agricultural 
datasets.: 

 
(Picture 5 – Ensemble prediction formula) 

Deep Learning (DL) 
DL expands traditional artificial neural networks (ANN) with multi-layer architectures, 

effectively managing large, complex datasets. The training process involves unsupervised pre-
training to refine representations, followed by supervised fine-tuning to optimize classification 
performance. In this study, a deep learning model with a 200×200 configuration was utilized, 
undergoing pre-training and fine-tuning to capture high-dimensional patterns within the agricultural 
data [3]. 

Convolutional Neural Network (CNN) 
CNNs are particularly well-suited for analyzing visual data such as satellite imagery, making 

them ideal for capturing spatial and temporal patterns related to crop health. The CNN model in this 
study analyzed time-series satellite data, automatically extracting features without manual 
engineering. ReLU activation and Adam optimization were used, and a dropout rate of 0.5 was 
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applied across all layers to prevent overfitting. The model input was organized as histograms, with 
11 variables represented in 32-bin formats for each district, allowing the CNN to learn subtle spatial 
correlations between satellite imagery and crop yields [5]. 

Result and Discussion 
In the study, various machine learning models, including SVM, Random Forest (RF), 

Extremely Randomized Trees (ERT), and Deep Learning (DL), were used to predict corn yields, 
benchmarked against USDA statistics. The dataset, spanning the MJJAS growing season, was 
validated using the leave-one-year-out cross-validation method, generating 11 sets of results (2004-
2014). The DL model achieved the highest correlation (0.776) with an RMSE of 0.844 ton/ha, while 
RF and ERT demonstrated comparable accuracy (correlation coefficients of 0.651 and 0.654, 
respectively). SVM had the lowest performance with a correlation of 0.590 and an RMSE of 0.959 
ton/ha. 

RF and ERT performed well across different seasonal periods, capturing the seasonal 
sensitivities of corn yields. DL outperformed across all periods (MJJAS=0.776), while RF and ERT 
also showed robust performance. SVM was more prone to overfitting, a common issue in complex 
models, where minor dataset fluctuations impacted performance. 

 

Table 1 – Validation statistics for the period groups MJJAS 

 
 

In a separate analysis using OLS regression, climate variables and soil properties were 
assessed for their influence on corn and soybean yields. NDVI had the most significant influence on 
yields for both crops, with precipitation (PPT) and minimum temperature (Tmin) playing important 
roles for corn and soybeans, respectively. The study highlighted how soil texture and nitrogen 
fertilizer (NTRG) also contributed to crop performance, emphasizing the need for further analysis on 
how irrigation practices interact with soil properties. 

Validation results for 2011-2012 showed reasonable error metrics (MAE of 0.726 ton/ha for 
corn in 2011 and 1.046 ton/ha in 2012). Prediction errors increased in 2012 due to drought 
conditions, impacting model performance. However, correlation coefficients remained high (0.909 
for corn in 2011 and 0.903 for soybeans). 

The proposed CNN model demonstrated strong predictive capabilities for cabbage and 
radish yields in temperate, seasonally variable climates, achieving high correlation values (up to 
0.7046 for radish and 0.6350 for cabbage) and relatively low RMSE (1,358 to 1,553), thereby 
highlighting its ability to capture complex, spatiotemporal data patterns. Despite these strengths, the 
model exhibited limitations during early prediction stages and under extreme climate conditions, such 
as the 2018 heatwave, where it overestimated yields, suggesting a need for architectural adaptations 
or additional weather-related variables to enhance robustness. 
 

Table 2 – Validation results of the regression models (OLS) for corn and soybean yields 
across different years, including metrics such as mean bias, MAE, RMSE, MAPE 

 
 

The study emphasizes the importance of selecting stable regions to minimize the impact of 
unpredictable factors like natural disasters on yield predictions. Machine learning models such as 
RF, ERT, and DL demonstrate strong potential for improving agricultural productivity and food 
security through precision agriculture. Comprehensive evaluations, including metrics like MAE, 
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RMSE, and R-squared, along with visualizations like scatter plots and residual analysis, provide a 
thorough understanding of model performance. 

Through a comparative evaluation of models, including CNNs, RF, ERT, SVM, and Ordinary 
Least Squares (OLS) regression, this review identifies specific advantages under varying agricultural 
conditions. CNNs perform effectively in large-scale spatial analysis using satellite imagery, while 
neural networks based on soil properties offer superior accuracy in areas where soil chemistry 
significantly impacts yield.  

 
Table 3 – 8:2 validation results for radish and cabbage using the proposed CNN model, 

reference CNN model (Mu et al., 2019), and Random Forest 

 
 

 

Random Forest and ERT models provide robustness in heterogeneous environments with 
diverse soil types and climates, making them ideal for multi-crop or variable conditions. In 
homogeneous or monoculture systems, OLS regression and SVM offer simplicity and effectiveness, 
particularly under stable climatic patterns. The integration of multiple data sources – satellite 
imagery, soil properties, and climate metrics – further enhances model accuracy, enabling tailored 
adaptations across crops and regions.  
 

Table 4 – Summarized results in the table 
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Conclusion 
This comprehensive meta-analysis underscores the transformative impact of integrating 

advanced machine learning techniques with high-resolution satellite imagery and soil chemical 
properties for crop yield prediction. By synthesizing methodologies across various studies, this 
research highlights how models like Convolutional Neural Networks (CNNs), Random Forests (RF), 
Extremely Randomized Trees (ERT), Support Vector Machines (SVM), and Ordinary Least Squares 
(OLS) regression each offer unique advantages in handling the complexities of modern agricultural 
ecosystems. 

CNNs demonstrated superior predictive accuracy for crops like radish under stable 
environmental conditions, leveraging their ability to automatically extract features from high-
dimensional data. Random Forests and ERT models exhibited robustness in heterogeneous 
environments with diverse soil types and climatic variables, making them well-suited for multi-crop 
systems and regions with variable conditions. These ensemble methods effectively handled 
nonlinear relationships and reduced overfitting risks, contributing to reliable yield predictions. 

In contrast, SVMs and OLS regression models offered simplicity and computational 
efficiency, performing effectively in homogeneous or monoculture systems with stable climatic 
patterns.  

A critical insight from this research is the significant enhancement of prediction accuracy 
when integrating soil chemical properties – such as pH, nutrient content, and organic matter—with 
satellite-derived vegetation indices. This comprehensive approach acknowledges the essential role 
of below-ground factors in crop development, providing a more holistic understanding of the factors 
influencing yields. The fusion of above-ground and below-ground data allows models to account for 
the spatial and temporal variability inherent in agricultural environments. 

The study also emphasizes the importance of selecting stable regions for yield prediction to 
minimize the impact of unpredictable factors like natural disasters. By focusing on areas with 
consistent environmental conditions, models can achieve higher accuracy, which is crucial for 
informing agricultural policies and resource management strategies. 

Through the comparative evaluation of different models, the research illustrates that no single 
method universally outperforms others across all conditions. Instead, the choice of model should be 
tailored to specific agricultural contexts, considering factors such as data availability, computational 
resources, crop types, and environmental variability.  
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ПРОГНОЗИРОВАНИЕ УРОЖАЙНОСТИ ПОЧВЫ 
 

Эта исследовательский проект представляет собой комплексный метаанализ в области 
сельскохозяйственной науки, в котором особое внимание уделяется прогнозированию урожайности 
сельскохозяйственных культур. Это исследование включает в себя сопоставление и синтез 
результатов различных исследований и статей, в которых рассматриваются различные 
методологии и модели прогнозирования сельскохозяйственной продукции. Целью этого 
всеобъемлющего обзора является выявление тенденций, методологий и ключевых факторов, 
которые последовательно влияют на прогнозы урожайности сельскохозяйственных культур в 
рамках различных исследований. 

В нем обобщены методологии из различных исследований, особое внимание уделяется 
методам машинного обучения (ML), таким как методы опорных векторов (SVM), случайный лес (RF) 
и сверточные нейронные сети (CNN). Эти исследования объединяют спутниковые снимки высокого 
разрешения с экологическими показателями, такими как NDVI, EVI и LAI. Химические свойства 
почвы (рН, питательные вещества) и полученные со спутника данные были использованы для 
улучшения прогнозирования урожайности различных культур. Полученные результаты 
свидетельствуют о сравнительной эффективности различных моделей при обработке 
пространственной и временной изменчивости как наземных, так и подземных данных, что 
повышает точность прогнозирования в различных условиях окружающей среды и почвы. 

Благодаря этому теоретическому анализу исследование подчеркивает потенциал 
передовых аналитических моделей для преобразования сельскохозяйственного мониторинга и 
прогнозирования, предоставляя важную информацию, которая может помочь в оптимизации 
сельскохозяйственной политики и управлении ресурсами. 

Ключевые слова: Прогнозирование урожайности сельскохозяйственных культур, 
Спутниковые снимки, Машинное обучение, Сверточные нейронные сети (CNN), Вегетационные 
индексы, Химические свойства почвы. 
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ТОПЫРАҚ ӨНІМДІЛІГІН БОЛЖАУ 
 

Бұл зерттеу жобасы ауыл шаруашылығы ғылымы саласындағы кешенді мета-анализ ретінде 
қызмет етеді, атап айтқанда дақылдардың өнімділігін болжауға бағытталған. Бұл әрекет ауыл 
шаруашылығының өнімділігін болжаудың әртүрлі әдістемелері мен үлгілерін зерттеген әртүрлі 
зерттеулер мен мақалалардың нәтижелерін салыстыруды және синтездеуді қамтиды. Бұл жан-
жақты шолудың мақсаты әртүрлі зерттеулердегі дақылдардың өнімділігін болжауға дәйекті түрде 
әсер ететін тенденцияларды, әдістемелерді және негізгі факторларды анықтау болып табылады. 

Ол Әртүрлі зерттеулердің әдістемелерін синтездейді, Векторлық Машиналарды (SVM), 
Кездейсоқ Ормандарды (RF) Және Конволюциялық Нейрондық Желілерді (CNN) Қолдау сияқты 
машиналық оқыту (ML) әдістеріне баса назар аударады. Бұл зерттеулер жоғары 
ажыратымдылықтағы спутниктік суреттерді NDVI, EVI және LAI сияқты экологиялық 
көрсеткіштермен біріктіреді. Топырақтың химиялық қасиеттері (рн, қоректік заттар) және 
спутниктік деректер әртүрлі дақылдардың өнімділігін болжауды жақсарту үшін пайдаланылды. 
Нәтижелер әртүрлі модельдердің жер үсті және жер асты деректерінің кеңістіктік және уақыттық 
өзгергіштігін өңдеудегі салыстырмалы тиімділігін көрсетеді, қоршаған орта мен топырақтың 
әртүрлі жағдайларында болжау дәлдігін жақсартады. 

Осы теориялық талдау арқылы зерттеу ауыл шаруашылығы саясатын оңтайландыруға 
және ресурстарды басқаруға көмектесетін маңызды ақпаратты ұсына отырып, ауыл 
шаруашылығы мониторингі мен болжамын өзгерту үшін озық аналитикалық модельдердің әлеуетін 
көрсетеді. 
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DEVELOPMENT OF A COMPREHENSIVE SOFTWARE SOLUTION FOR PROCESSING  
HIGH-SULFUR, COPPER-POOR CONCENTRATES IN THE COPPER SMELTING INDUSTRY 

 
Abstract: The depletion of high-grade copper ores and the increasing prevalence of low-

grade, high-sulfur copper concentrates present significant challenges to the copper smelting 
industry. Traditional smelting processes struggle to maintain economic viability and comply with 
environmental regulations when processing these complex ores. This paper details the development 
of a comprehensive software solution designed to simulate the smelting process for high-sulfur, 
copper-poor concentrates. The software employs a detailed mathematical model to predict the yields 
and compositions of products, including valuable metals, during the smelting process. It integrates 
multiple modules, such as ore input, smelting simulation, and results presentation, providing a user-
friendly platform for optimizing smelting operations. Critical parameters like ore composition, 
smelting temperature, and flux addition are incorporated into the model, enabling accurate 
predictions of matte and slag outputs. By analyzing these outputs, the software aids in optimizing 
metal recovery and reducing losses, ultimately enhancing the efficiency and sustainability of copper 
production. This tool is particularly relevant for large sulfide copper ore deposits, such as those in 
Kazakhstan, which have high sulfur content and low copper levels. The software's ability to simulate 
different processing scenarios provides valuable insights for industrial applications, supporting the 
development of more efficient and eco-friendly smelting technologies. The comprehensive software 
solution not only addresses the technical challenges of processing high-sulfur, low-copper ores but 
also contributes to the industry's efforts to reduce environmental impact and improve resource 
management. This innovation represents a significant step forward in the optimization of copper 
smelting operations, promoting sustainability and efficiency in the face of declining ore quality. 

Key words: copper smelting, high-sulfur ores, smelting simulation, metal recovery, 
optimization. 

 
Introduction 
The copper smelting industry is transforming due to the depletion of high-grade ores and the 

rise of complex, low-grade ores [1, 2]. These ores, high in sulfur and low in copper, challenge 
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